We recently characterized 24-hr daily rhythmic patterns of gene expression in Anopheles gambiae mosquitoes. These include numerous odorant binding proteins (OBPs), soluble odorant carrying proteins enriched in olfactory organs. Here we demonstrate that multiple rhythmically expressed genes including OBPs and takeout proteins, involved in regulating blood feeding behavior, have corresponding rhythmic protein levels as measured by quantitative proteomics. This includes AgamOBP1, previously shown as important to An. gambiae odorant sensing. Further, electrophysiological investigations demonstrate time-of-day specific differences in olfactory sensitivity of antennae to major host-derived odorants. The pre-dusk/dusk peaks in OBPs and takeout gene expression correspond with peak protein abundance at night, and in turn coincide with the time of increased olfactory sensitivity to odorants requiring OBPs and times of increased blood-feeding behavior. This suggests an important role for OBPs in modulating temporal changes in odorant sensitivity, enabling the olfactory system to coordinate with the circadian niche of An. gambiae.
BackgroundThe mosquito species Aedes aegypti is the primary vector of many arboviral diseases, including dengue and yellow fevers, that are responsible for a large worldwide health burden. The biological rhythms of mosquitoes regulate many of the physiological processes and behaviors that influence the transmission of these diseases. For insight into the molecular basis of biological rhythms, diel and circadian gene expression profiling has been carried out for many species. To bring these resources to Aedes aegypti researchers, we used microarray technology to carry out a genome wide assessment of gene expression during the 24 hour light/dark (LD) cycle and during constant darkness (DD). The purpose of this report is to describe the methods, the validation of the results, and the organization of this database resource.DescriptionThe Aedes aegypti Circadian Database is a publicly accessible database that can be searched via a text-based query to visualize 44 hour temporal expression patterns of a given gene in Ae. aegypti heads under diel (observed under a 12 hour/12 hour LD cycle) and circadian (observed under DD) conditions. Profiles of gene expression under these conditions were assayed by Nimblegen 12-plex microarrays and rhythmicity was objectively assessed by the JTK_CYCLE algorithm. The output of the search is a graphical representation of the expression data along with computed period length, the time-of-day of gene expression peaks, and statistical determination for rhythmicity.ConclusionOur results show that at least 7.9% of the gene set present in the Aedes aegypti head are rhythmic under LD conditions and 6.7% can be considered circadian, oscillating under constant dark conditions. We present these results in the Aedes aegypti Circadian Database through Bioclock, a public website hosted by the University of Notre Dame at http://www.nd.edu/~bioclock/. This website allows searchable browsing of this quantitative gene expression information. The visualization allows for gene-by-gene comparison of transcript expression under both diel and circadian conditions, and the results are presented graphically in a plot profile of gene expression. The Ae. aegypti Circadian Database provides a community resource for observing diel and circadian fluctuations in gene expression across the Ae. aegypti genome.
Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a divergent subfamily of mosquito rhodopsins, Aaop10 and Agop10, is coexpressed in these R7 photoreceptors. The properties of the A. aegypti Aaop8 and Aaop10 rhodopsins were analyzed by creating transgenic Drosophila expressing these rhodopsins. Electroretinogram recordings, and spectral analysis of head extracts, obtained from the Aaop8 strain confirmed that Aaop8 is an ultravioletsensitive rhodopsin. Aaop10 was poorly expressed and capable of eliciting only small and slow light responses in Drosophila photoreceptors, and electroretinogram analysis suggested that it is a long-wavelength rhodopsin with a maximal sensitivity near 500 nm. Thus, coexpression of Aaop10 rhodopsin with Aaop8 rhodopsin has the potential to modify the spectral properties of mosquito ultraviolet receptors. Retention of Op10 rhodopsin family members in the genomes of Drosophila species suggests that this rhodopsin family may play a conserved role in insect vision.
Multiple mechanisms contribute to a photoreceptor's ability to adapt to ambient light conditions. The mosquito Aedes aegypti expresses the long wavelength rhodopsin Aaop1 in all R1–6 photoreceptors and most R8 photoreceptors. These photoreceptors alter the cellular location of Aaop1 and reorganize their photosensitive rhabdomeric membranes on a daily basis. During daylight periods, Aaop1 is excluded from the light sensitive rhabdomeres and localized to multi-vesicular bodies (MVBs) within the photoreceptor cytoplasm. In the dark, Aaop1 accumulates in the rhabdomeres and no Aaop1-containing MVBs are present in the cytoplasm. Manipulation of light treatments show the cellular movement of Aaop1 in and out of the rhabdomere is directly controlled by light. In a separate process, the photoreceptors reduce Aaop1 protein content during a time period spanning from late afternoon into the first two hours of the dark period. Aaop1 levels then gradually increase through the dark period and remain high following movement of Aaop1 to the cytoplasm at dawn. These results demonstrate that mosquito photoreceptors control rhodopsin availability during the daily light-dark cycle by novel mechanisms not discerned from analysis of traditional invertebrate models. These mechanisms will maximize a photoreceptor's light sensitivity range and therefore may be common in organisms active in low light conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.