Nanoparticles are being used in broad range of applications; therefore, these materials probably will enter the environment during their life cycle. The objective of the present study is to identify changes in properties of nanoparticles released into the environment with a case study on aluminum nanoparticles. Aluminum nanoparticles commonly are used in energetic formulations and may be released into the environment during their handling and use. To evaluate the transport of aluminum nanoparticles, it is necessary not only to understand the properties of the aluminum in its initial state but also to determine how the nanoparticle properties will change when exposed to relevant environmental conditions. Transport measurements were conducted with a soil-column system that delivers a constant upflow of a suspension of nanoparticles to a soil column and monitors the concentration, size, agglomeration state, and charge of the particles in the eluent. The type of solution and surface functionalization had a marked effect on the charge, stability, and agglomeration state of the nanoparticles, which in turn impacted transport through the receiving matrix. Transport also is dependent on the size of the nanoparticles, although it is the agglomerate size, not the primary size, that is correlated with transportability. Electrostatically induced binding events of positively charged aluminum nanoparticles to the soil matrix were greater than those for negatively charged aluminum nanoparticles. Many factors influence the transport of nanoparticles in the environment, but size, charge, and agglomeration rate of nanoparticles in the transport medium are predictive of nanoparticle mobility in soil.
Historically, obtaining quantitative chemical information using laser desorption ionization mass spectrometry for analyzing individual aerosol particles has been quite challenging. This is due in large part to fluctuations in the absolute ion signals resulting from inhomogeneities in the laser beam profile, as well as chemical matrix effects. Progress has been made in quantifying atomic species using high laser powers, but very few studies have been performed quantifying molecular species. In this study, promising results are obtained using a new approach to measure the fraction of organic carbon (OC) associated with elemental carbon (EC) in aerosol particles using single particle laser desorption ionization. A tandem differential mobility analyzer (TDMA) is used to generate OC/EC particles by size selecting EC particles of a given mobility diameter and then coating them with known thicknesses of OC measured using a second DMA. The mass spectra of the OC/EC particles exiting the second DMA are measured using an ultrafine aerosol timeof-flight mass spectrometer (UF-ATOFMS). A calibration curve is produced with a linear correlation (R 2 = 0.98) over the range of OC/EC ion intensity ratios observed in source and ambient studies. Importantly, the OC/EC values measured in ambient field tests with the UF-ATOFMS show a linear correlation (R 2 = 0.69) with OC/EC mass ratios obtained using semi-continuous filter based thermo-optical measurements. The calibration procedure established herein represents a significant step toward quantification of OC and EC in sub-micron ambient particles using laser desorption ionization mass spectrometry.
Simultaneous measurements of the effective density and chemical composition of individual ambient particles were made in Riverside, California by coupling a differential mobility analyzer (DMA) with an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS). In the summer, chemically diverse particle types (i.e., aged-OC, vanadium-OC-sulfate-nitrate, biomass) all had similar effective densities when measured during the same time period. This result suggests that during the summer study the majority of particle mass for the different particle types was dominated by secondary species (OC, sulfates, nitrates) of the same density, while only a small fraction of the total particle mass is accounted for by the primary particle cores. Also shown herein, the effective density is a dynamic characteristic of the Riverside, CA ambient aerosol, changing by as much as 40% within 16 h. During the summer measurement period, changes in the ambient atmospheric water content correlated with changes in the measured effective densities which ranged from approximately 1.0 to 1.5 g x cm(-3). This correlation is potentially due to evaporation of water from particles in the aerodynamic lens. In contrast, in the fall during a Santa Ana meteorological event, ambient particles with a mobility diameter of 450 nm showed three distinct effective densities, each related to a chemically unique particle class. Particles with effective densities of approximately 0.27 g x cm(-3), 0.87 g x cm(-3), and 0.93 g x cm(-3) were composed mostly of elemental carbon, lubricating oil, and aged organic carbon, respectively. It is interesting to contrast the seasonal differences where in the summer, particle density and mass were determined by high amounts of secondary species, whereas in the fall, relatively clean and dry Santa Ana conditions resulted in freshly emitted particles which retained their distinct source chemistries and densities.
[1] An aerosol time-of-flight mass spectrometer (ATOFMS) was used to measure the sizeresolved mixing state of particles over the northern Indian Ocean in October and November 2004. This period was chosen to observe the impact of the monsoonal transition on the size, chemistry, sources, and radiative properties of atmospheric aerosols in the region. Overall, elemental carbon with sulfate (EC-sulfate), biomass/biofuel burning, fresh sea salt (SS), aged sea salt, fly ash, and EC mixed with sea salt were the dominant supermicron particle types, whereas EC-sulfate, biomass/biofuel burning, and fly ash were the dominant submicron particle types. Interestingly, particles composed mostly of aged organic carbon and nitrate were virtually absent during the campaign. This is possibly from low ozone formation in the region or selective scavenging during transport. Notably, during long-range transport periods when an aethalometer measured the highest black carbon concentrations, 77% of submicron particles between 0.5 and 2.5 mm and 71% of EC/soot particles contained an intense 39 K + ion (a known tracer for biomass/biofuel combustion). These observations suggest when the air mass originated from India, biofuel combustion represented a significant source of the regional atmospheric brown cloud. The majority ($80%) of EC and biomass/biofuel burning particles were mixed with significant amounts of sulfate due to extensive secondary processing of these particles during transport. EC mixed with sea salt was also observed suggesting the particles had undergone cloud processing and become internally mixed during transport. These measurements support the use of an internal mixture of sulfate with EC/soot and biomass/biofuel burning in models to accurately calculate radiative forcing by aerosols in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.