Large particles containing nitric acid (HNO3) were observed in the 1999/2000 Arctic winter stratosphere. These in situ observations were made over a large altitude range (16 to 21 kilometers) and horizontal extent (1800 kilometers) on several airborne sampling flights during a period of several weeks. With diameters of 10 to 20 micrometers, these sedimenting particles have significant potential to denitrify the lower stratosphere. A microphysical model of nitric acid trihydrate particles is able to simulate the growth and sedimentation of these large sizes in the lower stratosphere, but the nucleation process is not yet known. Accurate modeling of the formation of these large particles is essential for understanding Arctic denitrification and predicting future Arctic ozone abundances.
Unique high mass negative ions in the -200 to -400 mass/charge range with repetitive spacings of 12, 14, and 16 units, representative of oligomeric species, have been detected in single ambient submicrometer aerosol particles using real-time single-particle mass spectrometry during the Study of Organic Aerosols field campaign conducted in Riverside, CA (SOAR) in August and November 2005. These oligomer-containing particles represented 33-40% of the total detected particles and contained other indicators of aging including oxidized organic carbon, amine, nitrate, and sulfate ion markers. Overall, the highest mass oligomeric patterns were observed in small acidic 140-200 nm particles in the summer. Also during the summer, increased oligomer intensities were observed when the particles were heated with a thermodenuder. We hypothesize that heat removed semivolatile species, thereby increasing particle acidity, while concentrating the oligomeric precursors and accelerating oligomer formation. Differences in oligomer behavior with respect to particle size and heating can be attributed to seasonal differences in photochemical oxidation, the relative amount of ammonium, and particle acidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.