This study investigated the potential use of static osmotic loading as a cartilage tissue engineering strategy for growing clinically relevant grafts from either synovium-derived stem cells (SDSCs) or chondrocytes. Bovine SDSCs and chondrocytes were individually encapsulated in 2% w/v agarose and divided into chondrogenic media of osmolarities 300 (hypotonic), 330 (isotonic), and 400 (hypertonic, physiologic) mOsM for up to 7 weeks. The application of hypertonic media to constructs comprised of SDSCs or chondrocytes led to increased mechanical properties as compared to hypotonic (300 mOsM) or isotonic (330 mOsM) media (p<0.05). Constant exposure of SDSC-seeded constructs to 400 mOsM media from day 0 to day 49 yielded a Young’s modulus of 513±89 kPa and GAG content of 7.39±0.52% ww on day 49, well within the range of values of native, immature bovine cartilage. Primary chondrocyte-seeded constructs achieved almost as high a Young’s modulus, reaching 487±187 kPa and 6.77±0.54%ww (GAG) for the 400 mOsM condition (day 42). These findings suggest hypertonic loading as a straightforward strategy for 3D cultivation with significant benefits for cartilage tissue engineering strategies. In an effort to understand potential mechanisms responsible for the observed response, cell volume measurements in response to varying osmotic conditions were evaluated in relation to the Boyle–van’t Hoff (BVH) law. Results confirmed that chondrocytes behave as perfect osmometers; however SDSCs deviated from the BVH relation.
This study investigated the potential use of static osmotic loading as a cartilage tissue engineering strategy for growing clinically relevant grafts from either synovium-derived stem cells (SDSCs) or chondrocytes. Bovine SDSCs and chondrocytes were individually encapsulated in 2% w/v agarose and divided into chondrogenic media of osmolarities 300 (hypotonic), 330 (isotonic), and 400 (hypertonic, physiologic) mOsM for up to 7 weeks. The application of hypertonic media to constructs comprised of SDSCs or chondrocytes led to increased mechanical properties as compared to hypotonic (300 mOsM) or isotonic (330 mOsM) media (p<0.05). Constant exposure of SDSC-seeded constructs to 400 mOsM media from day 0 to day 49 yielded a Young's modulus of 513±89 kPa and GAG content of 7.39±0.52% ww on day 49, well within the range of values of native, immature bovine cartilage. Primary chondrocyte-seeded constructs achieved almost as high a Young's modulus, reaching 487±187 kPa and 6.77±0.54%ww (GAG) for the 400 mOsM condition (day 42). These findings suggest hypertonic loading as a straightforward strategy for 3D cultivation with significant benefits for cartilage tissue engineering strategies. In an effort to understand potential mechanisms responsible for the observed response, cell volume measurements in response to varying osmotic conditions were evaluated in relation to the Boylevan't Hoff (BVH) law. Results confirmed that chondrocytes behave as perfect osmometers; however SDSCs deviated from the BVH relation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.