Glucagon-like peptide 1 (GLP-1) is a metabolic hormone involved in the stimulation of insulin biosynthesis and secretion. It has been recently reported that GLP-1 also exerts cardioprotective effects and facilitates functional recovery after myocardial infarction through GLP-1 receptor-mediated signaling in cardiomyocytes. GLP-1 treatment has been also demonstrated to produce sustained improvement in cardiac function in long-term studies, suggesting the involvement of mechanisms beyond the acute metabolic and cytoprotective effects. For example, the possible interaction of GLP-1 with the cardiac fibroblasts, which are responsible for the postinfarct remodeling and extracellular matrix production, has not been previously explored. Here, we report that cultures of human cardiac fibroblasts treated with GLP-1 peptides display a selective up-regulation in elastin gene expression and a consequent increase in elastic fibers production, in the absence of the classic GLP-1 receptor. Importantly, we provide experimental evidence that this GLP-1-induced elastogenesis is triggered through the cross-activation of the IGF-I receptor. Because GLP-1 does not stimulate deposition of collagen I, nor promote the proliferation or apoptosis of cultured cardiac fibroblasts, we speculate that its elastogenic effect may also contribute to the beneficial remodeling of the human heart after myocardial infarction.
Obesity and Type 2 diabetes represent global health challenges, and there is an unmet need for long-lasting and effective pharmacotherapies. Although long-acting glucagon-like peptide-1 (GLP-1) analogues are now in routine use for diabetes and are now being utilised for obesity per se, the need for ever better treatments has driven the development of co-agonists, with the theoretical advantages of improved efficacy by targeting multiple pathways and reduced adverse effects. In this review, we highlight the past and present progress in our understanding and development of treatments based on GLP-1/glucagon co-agonism. We also reflect on the divergent effects of varying the GLP-1:glucagon activity and ratio in the context of pre-clinical and human clinical trial findings. In particular, the multiple metabolic actions of glucagon highlight the importance of understanding the contributions of individual hormone action to inform the safe, effective and tailored use of GLP-1/glucagon co-agonists to target weight loss and metabolic disease in the future.
The level of maladaptive myocardial remodeling consistently contributes to the poor prognosis of patients following a myocardial infarction (MI). In this study, we investigated whether and how sodium tanshinone IIA sulfonate (STS) would attenuate the post-infarct cardiac remodeling in mice model of MI developing after surgical ligation of the left coronary artery. All mice subjected to experimental MI or to the sham procedure were then treated for the following 4 weeks, either with STS or with a vehicle alone. Results of our studies indicated that STS treatment of MI mice prevented the left ventricular dilatation and improved their cardiac function. Results of further tests, aimed at mechanistic explanation of the beneficial effects of STS, indicated that treatment with this compound enhanced the autophagy and, at the same time, inhibited apoptosis of the cardiomyocytes. Meaningfully, we have also established that myocardium of STS-treated mice displayed significantly higher levels of adenosine monophosphate kinase than their untreated counterparts and that this effect additionally associated with the significantly diminished activities of apoptotic promoters: mammalian target of rapamycin and P70S6 kinase. Moreover, we also found that additional administration of the adenosine monophosphate kinase inhibitor (compound C) or autophagy inhibitor (chloroquine) practically eliminated the observed beneficial effects of STS. In conclusion, we suggest that the described multistage mechanism triggered by STS treatment enhanced autophagy, thereby attenuating pathologic remodeling of the post-infarct hearts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.