Fast radio bursts 1,2 are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients 3 . So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources 4 or the presence of peculiar field stars 5 or galaxies 4 . These attempts have not resulted in an unambiguous association 6,7 with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source 8-11 , using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with nonthermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts 12,13 and tidal disruption events 14 . However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.The repetition of bursts from FRB 121102 9,10 enabled a targeted interferometric localization campaign with the Karl G. Jansky Very Large Array (VLA) in concert with single-dish observations using the 305-m William E. Gordon Telescope at the Arecibo Observatory. We searched for bursts in VLA data with 5-ms sampling using both beam-forming and imaging techniques 15 (see Methods). In over 83 h of VLA observations distributed over six months, we detected nine bursts from FRB 121102 in the 2.5-3.5-GHz band with signalto-noise ratios ranging from 10 to 150, all at a consistent sky position.
We present results of the coordinated observing campaign that made the first subarcsecond localization of a Fast Radio Burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst by multiple telescopes: the VLA at 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous observing coverage at other observatories. We use multi-observatory constraints and modeling of bursts seen only at 3 GHz to confirm earlier results showing that burst spectra are not well modeled by a power law. We find that burst spectra are characterized by a ∼ 500 MHz envelope and apparent radio energy as high as 10 40 erg. We measure significant changes in the apparent dispersion between bursts that can be attributed to frequency-dependent profiles or some other intrinsic burst structure that adds a systematic error to the estimate of DM by up to 1%. We use FRB 121102 as a prototype of the FRB class to estimate a volumetric birth rate of FRB sources R FRB ≈ 5 × 10 −5 /N r Mpc −3 yr −1 , where N r is the number of bursts per source over its lifetime. This rate is broadly consistent with models of FRBs from young pulsars or magnetars born in superluminous supernovae or long gamma-ray bursts, if the typical FRB repeats on the order of thousands of times during its lifetime.
We present POWDERDAY (available at https://github.com/dnarayanan/powderday), a flexible, fast, open-source dust radiative transfer package designed to interface with both idealized and cosmological galaxy formation simulations. POWDERDAY builds on FSPS stellar population synthesis models, and HYPERION dust radiative transfer, and employs YT to interface between different software packages. We include our stellar population synthesis modeling on the fly, allowing significant flexibility in the assumed stellar physics and nebular line emission. The dust content follows either simple observationally motivated prescriptions (i.e., constant dust-tometals ratios, or dust-to-gas ratios that vary with metallicity), direct modeling from galaxy formation simulations that include dust physics, as well as a novel approach that includes the dust content via learning-based algorithms from the SIMBA cosmological galaxy formation simulation. Active galactic nuclei (AGNs) can additionally be included via a range of prescriptions. The output of these models are broadband (912 Å-1 mm) spectral energy distributions (SEDs), as well as filter-convolved monochromatic images. POWDERDAY is designed to eliminate last-mile efforts by researchers that employ different hydrodynamic galaxy formation models and seamlessly interfaces with GIZMO, AREPO, GASOLINE, CHANGA, and ENZO. We demonstrate the capabilities of the code via three applications: a model for the star formation rate-infrared luminosity relation in galaxies (including the impact of AGNs), the impact of circumstellar dust around AGB stars on the mid-infrared emission from galaxy SEDs, and the impact of galaxy inclination angle on dust attenuation laws.
We introduce a simple entropy-based formalism to characterize the role of mixing in pressure-balanced multiphase clouds and demonstrate example applications using enzo-e (magneto)hydrodynamic simulations. Under this formalism, the high-dimensional description of the system’s state at a given time is simplified to the joint distribution of mass over pressure (P) and entropy (K = P ρ −γ ). As a result, this approach provides a way to (empirically and analytically) quantify the impact of different initial conditions and sets of physics on the system evolution. We find that mixing predominantly alters the distribution along the K direction and illustrate how the formalism can be used to model mixing and cooling for fluid elements originating in the cloud. We further confirm and generalize a previously suggested criterion for cloud growth in the presence of radiative cooling and demonstrate that the shape of the cooling curve, particularly at the low-temperature end, can play an important role in controlling condensation. Moreover, we discuss the capacity of our approach to generalize such a criterion to apply to additional sets of physics and to build intuition for the impact of subtle higher-order effects not directly addressed by the criterion.
We present Korg, a new package for 1D LTE spectral synthesis of FGK stars, which computes theoretical spectra from the near-ultraviolet to the near-infrared, and implements both plane-parallel and spherical radiative transfer. We outline the inputs and internals of Korg, and compare synthetic spectra from Korg, Moog, Turbospectrum, and SME. The disagreements between Korg and the other codes are no larger than those between the other codes, although disagreement between codes is substantial. We examine the case of a C2 band in detail, finding that uncertainties on physical inputs to spectral synthesis account for a significant fraction of the disagreement. Korg is 1–100 times faster than other codes in typical use, compatible with automatic differentiation libraries, and easily extensible, making it ideal for statistical inference and parameter estimation applied to large data sets. Documentation and installation instructions are available at https://ajwheeler.github.io/Korg.jl/stable/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.