In the energy transition, there is an urgent need for decreasing overall carbon emissions. Against this background, the purposeful and verifiable tracing of emissions in the energy system is a crucial key element for promoting the deep decarbonization towards a net zero emission economy with a market-based approach. Such an effective tracing system requires end-to-end information flows that link carbon sources and sinks while keeping end consumers’ and businesses’ sensitive data confidential. In this paper, we illustrate how non-fungible tokens with fractional ownership can help to enable such a system, and how zero-knowledge proofs can address the related privacy issues associated with the fine-granular recording of stakeholders’ emission data. Thus, we contribute to designing a carbon emission tracing system that satisfies verifiability, distinguishability, fractional ownership, and privacy requirements. We implement a proof-of-concept for our approach and discuss its advantages compared to alternative centralized or decentralized architectures that have been proposed in the past. Based on a technical, data privacy, and economic analysis, we conclude that our approach is a more suitable technical backbone for end-to-end digital carbon emission tracing than previously suggested solutions.
Analyses that fulfill differential privacy provide plausible deniability to individuals while allowing analysts to extract insights from data. However, beyond an often acceptable accuracy tradeoff, these statistical disclosure techniques generally inhibit the verifiability of the provided information, as one cannot check the correctness of the participants' truthful information, the differentially private mechanism, or the unbiased random number generation. While related work has already discussed this opportunity, an efficient implementation with a precise bound on errors and corresponding proofs of the differential privacy property is so far missing. In this paper, we follow an approach based on zero-knowledge proofs (ZKPs), in specific succinct non-interactive arguments of knowledge, as a verifiable computation technique to prove the correctness of a differentially private query output. In particular, we ensure the guarantees of differential privacy hold despite the limitations of ZKPs that operate on finite fields and have limited branching capabilities. We demonstrate that our approach has practical performance and discuss how practitioners could employ our primitives to verifiably query individuals' age from their digitally signed ID card in a differentially private manner. CCS CONCEPTS• Information systems → Electronic data interchange; • Security and privacy → Cryptography; Human and societal aspects of security and privacy; Privacy-preserving protocols.
ZusammenfassungDie Vernetzung kommunikationsfähiger Geräte schreitet aktuell schnell voran und verspricht durch eine Ende-zu-Ende-Digitalisierung von Prozessen Effizienzgewinne und neue Anwendungsmöglichkeiten. Die Verifizierung von Endgeräten ist insbesondere bei kritischen Infrastrukturen wie der Energieversorgung eine notwendige Bedingung. Unter anderem für die aktive Integration von Kleinstanlagen wie Photovoltaikanlagen oder Wärmepumpen in das Stromnetz stellt sich die Frage, wie Stamm- und Bewegungsdaten von Verbrauchs- und Erzeugungsanlagen vertraulich und unverändert verfügbar gemacht werden können. Mit der Beantwortung dieser Fragestellung hat sich das Projekt „Digitale Maschinen-Identitäten als Grundbaustein für ein automatisiertes Energiesystem (BMIL)“ im Rahmen des Future Energy Lab der Deutschen Energie-Agentur (dena) beschäftigt. Für die vertrauensvolle Einspeisung und Integration von dezentral erzeugten Daten folgt das Projekt dem Paradigma der selbstbestimmten Identitäten (engl.: SSI). Hierbei werden intelligente Messsysteme bzw. Smart Meter Gateways (SMGWs) mit Maschinenidentitäten ausgestattet. Dies ermöglicht Vertrauensketten zu nutzen, um Bewegungsdaten verbunden mit verifizierbaren Stammdaten in digitale Strommärkte zu integrieren. Im Rahmen dieses Artikels werden die Ergebnisse des BMIL-Projekts innerhalb einer Fallstudie aufgearbeitet und konkrete Handlungsempfehlungen für die Praxis zur Lösung des Oracle-Problems mit Hilfe von SSI abgeleitet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.