The soil-borne fungal pathogen Verticillium longisporum causes vascular disease on Brassicaceae host plants such as oilseed rape. The fungus colonizes the root xylem and moves upwards to the foliage where disease symptoms become visible. Using Arabidopsis as a model for early gene induction, we performed root transcriptome analyses in response to hyphal growth immediately after spore germination and during penetration of the root cortex, respectively. Infected roots showed a rapid reprogramming of gene expression such as activation of transcription factors, stress-, and defense-related genes. Here, we focused on the highly coordinated gene induction resulting in the production of tryptophan-derived secondary metabolites. Previous studies in leaves showed that enzymes encoded by CYP81F2 and PEN2 (PENETRATION2) execute the formation of antifungal indole glucosinolate (IGS) metabolites. In Verticillium-infected roots, we found transcriptional activation of CYP81F2 and the PEN2 homolog PEL1 (PEN2-LIKE1), but no increase in antifungal IGS breakdown products. In contrast, indole-3-carboxylic acid (I3CA) and the phytoalexin camalexin accumulated in infected roots but only camalexin inhibited Verticillium growth in vitro. Whereas genetic disruption of the individual metabolic pathways leading to either camalexin or CYP81F2-dependent IGS metabolites did not alter Verticillium-induced disease symptoms, a cyp79b2 cyp79b3 mutant impaired in both branches resulted in significantly enhanced susceptibility. Hence, our data provide an insight into root-specific early defenses and suggest tryptophan-derived metabolites as active antifungal compounds against a vascular pathogen.
Photoactivatable rhodamine spiroamides and spirocyclic diazoketones emerged recently as synthetic markers applicable in multicolor super-resolution microscopy. However, their applicability in single molecule localization microscopy (SMLM) is often limited by aggregation, unspecific adhesion, and low reactivity caused by insufficient solubility and precipitation from aqueous solutions. We report here two synthetic modifications increasing the polarity of compact polycyclic and hydrophobic labels decorated with a reactive group: attachment of 3-sulfo-l-alanyl-beta-alanine dipeptide (a "universal hydrophilizer") or allylic hydroxylation in photosensitive rhodamine diazoketones (and spiroamides). The super-resolution images of tubulin and keratin filaments in fixed and living cells exemplify the performance of "blinking" spiroamides derived from N, N, N', N'-tetramethyl rhodamine.
A stereoselective synthesis of a derivatized bicyclic [4.3.1]decane scaffold based on an acyclic precursor is described. The key steps involve a Pd-catalyzed sp(3)-sp(2) Negishi-coupling, an asymmetric Shi epoxidation, and an intramolecular epoxide opening. Representative derivatives of this novel scaffold were synthesized and found to be potent inhibitors of the psychiatric risk factor FKBP51, which bound to FKBP51 with the intended molecular binding mode.
Sirtuins are signaling
hubs orchestrating the cellular response
to various stressors with roles in all major civilization diseases.
Sirtuins remove acyl groups from lysine residues of proteins, thereby
controlling their activity, turnover, and localization. The seven
human sirtuins, SirT1–7, are closely related in structure,
hindering the development of specific inhibitors. Screening 170,000
compounds, we identify and optimize SirT1-specific benzoxazine inhibitors,
Sosbo, which rival the efficiency and surpass the selectivity of selisistat
(EX527). The compounds inhibit the deacetylation of p53 in cultured
cells, demonstrating their ability to permeate biological membranes.
Kinetic analysis of inhibition and docking studies reveal that the
inhibitors bind to a complex of SirT1 and nicotinamide adenine dinucleotide,
similar to selisistat. These new SirT1 inhibitors are valuable alternatives
to selisistat in biochemical and cell biological studies. Their greater
selectivity may allow the development of better targeted drugs to
combat SirT1 activity in diseases such as cancer, Huntington’s
chorea, or anorexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.