Apolipophorin III (apoLp-III) is an exchangeable insect apolipoprotein consisting of five amphipathic alpha-helices. The protein is able to open reversibly on associating with hydrophobic surfaces and plays a role both in lipid transport and induction of immune responses. Point mutations were introduced at positions 66 (N-->D) and/or 68 (K-->E) between helices 2 and 3, a region possibly serving as a hinge for the opening of the molecule when associating with lipids. The lipid-binding properties of the mutant proteins were analyzed and compared with their immune inducing activities. Structural properties of the proteins were studied by far UV circular dichroism spectroscopy and their abilities to form discoidal complexes of dimyristoyl phosphatidylcholine (DMPC) vesicles were investigated. In comparison to wild-type apoLp-III, apoLp-III(N66D/K68E), and apoLp-III(K68E) displayed significantly decreased lipid-binding abilities and immune stimulating activities, while these effects were less noticeable with apoLp-III(N66D). The secondary structure of the double mutant apoLp-III(N66D/K68E) was similar to that of wild-type apoLp-III. A noticeable reduction of alpha-helical content could be observed for the single mutants apoLp-III(N66D) and apoLp-III(K68E), which was accompanied by an increase in percentage amount of beta-turns. The stability of the secondary structure determined by heat denaturation was not affected by mutagenesis. Furthermore, the ability of all proteins to form discoidal complexes of equal size and shape in the presence of dimyristoyl phosphatidylcholine indicated that the mutagenesis did not affect the molecular architecture in the lipid-associated conformation. The relationship between reduced lipid association and reduced immune stimulating activity supports the hypothesis that apoLp-III-induced immune activation is triggered by the conformational change of the protein.
Apolipophorin III (apoLp-III) is a prototype exchangeable apolipoprotein that is amenable to structure-function studies. The protein folds as a bundle of five amphipathic alpha-helices and undergoes a dramatic conformational change upon lipid binding. Recently, we have shown that a truncation mutant of Galleria mellonella apoLp-III comprising helices 1-3 is stable in solution and able to bind to lipid surfaces [Dettloff, M., Weers, P. M. M., Niere, M., Kay, C. M., Ryan, R. O., and Wiesner, A. (2001) Biochemistry 40, 3150-3157]. To investigate the role of the C-terminal helices in apoLp-III structure and function, two additional 3-helix mutants were designed: a core fragment comprising helix (H) 2-4, and a C-terminal fragment (H3-5). Each truncation mutant retained the ability to associate spontaneously with dimyristoylphosphatidylcholine (DMPC) vesicles, transforming them into discoidal complexes. The rate of apolipoprotein-dependent DMPC vesicle transformation decreased in the order H1-3 > H2-4 > H3-5. Truncation of two helices led to a significant decrease in alpha-helical content in buffer in each case, from 86% (wild-type) to 50% (H1-3), 28% (H2-4), and 24% alpha-helical content (H3-5). On the other hand, trifluoroethanol or complexation with DMPC induced the truncation mutants to adopt a high alpha-helical structure similar to that of wild-type protein (84-100% alpha-helical structure). ApoLp-III(H1-3) and apoLp-III(H2-4), but not apoLp-III(H3-5), were able to prevent phospholipase-C-induced low density lipoprotein aggregation, indicating that interaction of the C-terminal fragment with spherical lipoprotein surfaces was impaired. As lipoprotein binding is significantly affected and DMPC transformation rates are relatively slow upon removal of N-terminal helices, the data indicate that structural elements necessary for lipid interaction reside in the N-terminal part of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.