Crossed cerebellar diaschisis (CCD) can be associated with impaired cerebrovascular reactivity (CVR) and poor clinical outcome, but whether this holds true for patients with diffuse glioma is unknown. With blood oxygenation level–dependent (BOLD)-CVR imaging, we determined the presence of CCD in patients with diffuse glioma and investigated its relationship with cerebrovascular reactivity and clinical outcome. For eighteen enrolled subjects (nineteen datasets) with diffuse glioma, CCD was deferred from BOLD-CVR using a predetermined cerebellar asymmetry index (CAI) cutoff value of 6.0%. A FET-PET study was done as a verification of the CCD diagnosis. BOLD-CVR values as well as clinical performance scores (i.e., Karnofsky performance score (KPS), disability rating scale (DRS), and modified Rankin scale (mRS)) by BOLD-CVR scan at 3-month clinical follow-up were assessed and compared for the CCD-positive and CCD-negative group. CCD was present in 26.3% of subjects and strongly associated with impaired BOLD-CVR of the affected (i.e., the hemisphere harboring the glioma) and unaffected supratentorial hemisphere (CCD(+) vs. CCD(−): 0.08 ± 0.11 vs. 0.18 ± 0.04; p = 0.007 and 0.08 ± 0.12 vs. 0.19 ± 0.04; p = 0.007, respectively). This finding was independent of tumor volume (p = 0.48). Furthermore, poorer initial (by scan) clinical performance scores at follow-up were found for the CCD(+) group. The presence of crossed cerebellar diaschisis in patients with diffuse glioma is associated with impaired supratentorial cerebrovascular reactivity and worse clinical outcome.
BACKGROUND
The current gold standard for evaluation of the surgical result after intracranial aneurysm (IA) clipping is two-dimensional (2D) digital subtraction angiography (DSA). While there is growing evidence that postoperative 3D-DSA is superior to 2D-DSA, there is a lack of data on intraoperative comparison.
OBJECTIVE
To compare the diagnostic yield of detection of IA remnants in intra- and postoperative 3D-DSA, categorize the remnants based on 3D-DSA findings, and examine associations between missed 2D-DSA remnants and IA characteristics.
METHODS
We evaluated 232 clipped IAs that were examined with intraoperative or postoperative 3D-DSA. Variables analyzed included patient demographics, IA and remnant distinguishing characteristics, and 2D- and 3D-DSA findings. Maximal IA remnant size detected by 3D-DSA was measured using a 3-point scale of 2-mm increments.
RESULTS
Although 3D-DSA detected all clipped IA remnants, 2D-DSA missed 30.4% (7 of 23) and 38.9% (14 of 36) clipped IA remnants in intraoperative and postoperative imaging, respectively (95% CI: 30 [ 12, 49] %; P-value .023 and 39 [23, 55] %; P-value = <.001), and more often missed grade 1 (< 2 mm) clipped remnants (odds ratio [95% CI]: 4.3 [1.6, 12.7], P-value .005).
CONCLUSION
Compared with 2D-DSA, 3D-DSA achieves a better diagnostic yield in the evaluation of clipped IA. Our proposed method to grade 3D-DSA remnants proved to be simple and practical. Especially small IA remnants have a high risk to be missed in 2D-DSA. We advocate routine use of either intraoperative or postoperative 3D-DSA as a baseline for lifelong follow-up of clipped IA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.