We prove uniqueness results for conies of minimal area that enclose a compact, fulldimensional subset of the elliptic plane. The minimal enclosing conic is unique if its center or axes are prescribed. Moreover, we provide sufficient conditions on the enclosed set that guarantee uniqueness without restrictions on the enclosing conies. Similar results are formulated for minimal enclosing conies of line sets as well.
We present uniqueness results for enclosing ellipses of minimal area in the hyperbolic plane. Uniqueness can be guaranteed if the minimizers are sought among all ellipses with prescribed axes or center. In the general case, we present a sufficient and easily verifiable criterion on the enclosed set that ensures uniqueness.
We present a method for guaranteed collision detection with toleranced motions. The basic idea is to consider the motion as a curve in the 12-dimensional space of affine displacements, endowed with an object-oriented Euclidean metric, and cover it with balls. The associated orbits of points, lines, planes and polygons have particularly simple shapes that lend themselves well to exact and fast collision queries. We present formulas for elementary collision tests with these orbit shapes and we suggest an algorithm, based on motion subdivision and computation of bounding balls, that can give a no-collision guarantee. It allows a robust and efficient implementation and parallelization. At hand of several examples we explore the asymptotic behavior of the algorithm and compare different implementation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.