In digital image forensics, it is generally accepted that intentional manipulations of the image content are most critical and hence numerous forensic methods focus on the detection of such 'malicious' post-processing. However, it is also beneficial to know as much as possible about the general processing history of an image, including content-preserving operations, since they can affect the reliability of forensic methods in various ways. In this paper, we present a simple yet effective technique to detect median filtering in digital images-a widely used denoising and smoothing operator. As a great variety of forensic methods relies on some kind of a linearity assumption, a detection of non-linear median filtering is of particular interest. The effectiveness of our method is backed with experimental evidence on a large image database.
This paper revisits the state-of-the-art resampling detector, which is based on periodic artifacts in the residue of a local linear predictor. Inspired by recent findings from the literature, we take a closer look at the complex detection procedure and model the detected artifacts in the spatial and frequency domain by means of the variance of the prediction residue. We give an exact formulation on how transformation parameters influence the appearance of periodic artifacts and analytically derive the expected position of characteristic resampling peaks. We present an equivalent accelerated and simplified detector, which is orders of magnitudes faster than the conventional scheme and experimentally shown to be comparably reliable.
Compared to the prominent role digital images play in nowadays multimedia society, research in the field of image authenticity is still in its infancy. Only recently, research on digital image forensics has gained attention by addressing tamper detection and image source identification. However, most publications in this emerging field still lack rigorous discussions of robustness against strategic counterfeiters, who anticipate the existence of forensic techniques. As a result, the question of trustworthiness of digital image forensics arises. This work will take a closer look at two state-of-theart forensic methods and proposes two counter-techniques; one to perform resampling operations undetectably and another one to forge traces of image origin. Implications for future image forensic systems will be discussed.
This chapter discusses counter-forensics, the art and science of impeding or misleading forensic analyses of digital images. Research on counter-forensics is motivated by the need to assess and improve the reliability of forensic methods in situations where intelligent adversaries make efforts to induce a certain outcome of forensic analyses. Counter-forensics is first defined in a formal decision-theoretic framework. This framework is then interpreted and extended to encompass the requirements to forensic analyses in practice, including a discussion of the notion of authenticity in the presence of legitimate processing, and the role of image models with regard to the epistemic underpinning of the forensic decision problem. A terminology is developed that distinguishes security from robustness properties, integrated from post-processing attacks, and targeted from universal attacks. This terminology is directly applied in a self-contained technical survey of counter-forensics against image forensics, notably techniques that suppress traces of image processing and techniques that synthesize traces of authenticity, including examples and brief evaluations. A discussion of relations to other domains of multimedia security and an overview of open research questions concludes the chapter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.