The numerical simulation of thermalhydraulic processes in nuclear power plants requires very accurate and extremely fast algorithms for calculating the thermophysical properties of water and steam. In order to provide such algorithms, the International Association for the Properties of Water and Steam (IAPWS) has adopted the new “IAPWS Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL)”. In this article, the SBTL method is applied to property functions of specific volume and specific internal energy (v,e) based on the scientific formulation IAPWS-95 and the latest IAPWS formulations for transport properties. From the newly generated SBTL functions, thermodynamic and transport properties as well as their derivatives and inverse functions are calculable in the fluid range of state for pressures up to 100 MPa and for temperatures up to 1273 K, including the metastable liquid and the metastable vapor regions. The SBTL functions reproduce the underlying formulations with an accuracy of 10–100 ppm and significantly reduced computing times. The SBTL method has been implemented into the nuclear reactor system safety analysis code RELAP-7 [2] to consider the real fluid behavior of water and steam in a novel 7-equation two-phase flow model.
Accurate simulations of non-stationary processes in steam turbines by means of Computational Fluid Dynamics (CFD) require precise and extremely fast algorithms for computing real fluid properties. To fulfill these requirements, the International Association for the Properties of Water and Steam (IAPWS) issues the “Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL)” as an international standard. Through the use of this method, spline functions for the independent variables specific volume and specific internal energy (v,u) are generated for water and steam based on the industrial formulation IAPWS-IF97. With these spline functions, thermodynamic and transport properties can be computed. The desired backward functions of the variables pressure and specific volume (p,v), and specific internal energy and specific entropy (u,s) are numerically consistent with the spline functions from (v,u). The properties calculated from these SBTL functions are in agreement with those of IAPWS-IF97 within a maximum relative deviation of 10 to 100 ppm depending on the property and the range of thermodynamic states spanned under the given conditions (range of state). Consequently, the differences between the results of process simulations using the SBTL method and those obtained through the use of IAPWS-IF97 are negligible. Moreover, the computations from the (v,u) spline functions are more than 200 times faster than the iterative calculations with IAPWS-IF97. In order to demonstrate the efficiency and applicability of the SBTL method, the SBTL functions have been implemented into the CFD software TRACE, developed by the German Aerospace Center (DLR). As a result, the computing times required for the simulations of steam flow in a turbine cascade considering real fluid behavior are reduced by a factor of 6–10 in comparison to the calculations based on IAPWS-IF97. Furthermore, computing times are increased by a factor of 1.4 only with respect to CFD calculations where steam is considered to be an ideal gas, through the use of the SBTL method.
Sockeye is a heat pipe analysis application based on the Multiphysics Object-Oriented Simulation Environment (MOOSE) finite element framework. The primary purpose of Sockeye is to provide a transient heat pipe simulation tool to be used in the analysis of nuclear microreactor designs. Sockeye provides the capability to perform one-dimensional, two-phase, compressible flow simulation of a heat pipe working fluid and two-dimensional, axisymmetric heat conduction for the heat pipe cladding and its surroundings. Sockeye is demonstrated against analytical solutions and experimental data from the SAFE-30 heat pipe module test.
The current trend in computer architecture is for increasingly parallel computation while the clock frequency stagnates. The increase in computing speed is achieved by dividing a process into several threads which are executed in parallel on multiple processors, processors with multiple cores, cores that are able to handle multiple threads (hyper-threading), graphical processing units (GPU), or co-processors. In order to take advantage of these new architectures, algorithms that have historically been implemented for serial evaluation need to be refactored for parallelization. In this work, a native multithreading framework in C++11 for scientific and engineering model development is presented.
In this work, the performance characteristics and the flow field of a centrifugal compressor operating with supercritical CO2 are investigated by means of three-dimensional CFD. The considered geometry is based on main dimensions of the centrifugal compressor installed in the supercritical CO2 compression test-loop operated by Sandia National Laboratories. All numerical simulations are performed with a recently developed in-house hybrid CPU/GPU compressible CFD solver. Thermodynamic properties are computed through an efficient and accurate tabulation technique, the Spline-Based Table Look-Up Method (SBTL), particularly optimised for the applied density-based solution procedure. Numerical results are compared with available experimental data and accuracy as well as potentials in computational speedup of the solution method in combination with the SBTL are evaluated in the context of supercritical CO2 turbomachinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.