Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on L-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the L-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and L-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific L-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific L-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific L-lysine yield by 6 and 56%, respectively. In addition to L-lysine, significant amounts of pyruvate, L-alanine and L-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve L-lysine production by engineering the L-lysine biosynthetic pathway.
The impact of Sec signal peptides (SPs) from Bacillus subtilis in combination with isopropyl‐β‐ d‐1‐thiogalactopyranoside concentration and feeding profile was investigated for heterologous protein secretion performance by Corynebacterium glutamicum using cutinase as model enzyme. Based on a comprehensive data set of about 150 bench‐scale bioreactor cultivations in fed‐batch mode and choosing the cutinase yield as objective, it was shown that relative secretion performance for bioprocesses remains very similar, irrespective of the applied SP enabling Sec‐mediated cutinase secretion. However, to achieve the maximal absolute cutinase yield, careful adjustment of bioprocess conditions was found to be necessary. A model‐based, two‐step multiple regression approach resembled the collected data in a comprehensive way. The corresponding results suggest that the choice of the heterologous Sec SP and its interaction with the adjusted exponential feeding profile is highly relevant to maximize absolute cutinase yield in this study. For example, the impact of Sec SP is high at low growth rates and low at high growth rates. However, promising Sec SPs could be inferred from less complex batch cultivations. The extensive data were also evaluated in terms of cutinase productivity, highlighting the well‐known trade‐off between yield and productivity in bioprocess development in detail. Conclusively, only the right combination of target protein, Sec SP, and bioprocess conditions is the key to success.
With the advent of modern genetic engineering methods, microcultivation systems have become increasingly important tools for accelerated strain phenotyping and bioprocess engineering. While these systems offer sophisticated capabilities to screen batch processes, they lack the ability to realize fed-batch processes, which are used more frequently in industrial bioprocessing. In this study, a novel approach to realize a feedback-regulated enzyme-based slow-release system (FeedER), allowing exponential fed-batch for microscale cultivations, was realized by extending our existing Mini Pilot Plant technology with a customized process control system. By continuously comparing the experimental growth rates with predefined set points, the automated dosage of Amyloglucosidase enzyme for the cleavage of dextrin polymers into d-glucose monomers is triggered. As a prerequisite for stable fed-batch operation, a constant pH is maintained by automated addition of ammonium hydroxide. We show the successful application of FeedER to study fed-batch growth of different industrial model organisms including Corynebacterium glutamicum, Pichia pastoris, and Escherichia coli. Moreover, the comparative analysis of a C. glutamicum GFP producer strain, cultivated under microscale batch and fed-batch conditions, revealed two times higher product yields under slow growing fed-batch operation. In summary, FeedER enables to run 48 parallel fed-batch experiments in an automated and miniaturized manner, and thereby accelerates industrial bioprocess development at the screening stage.Electronic supplementary materialThe online version of this article (10.1007/s00449-019-02180-z) contains supplementary material, which is available to authorized users.
Oxygen supply is crucial in industrial application of microbial systems, such as Corynebacterium glutamicum, but oxygen transfer is often neglected in early strain characterizations, typically done under aerobic conditions. In this work, a new procedure for oxygen transfer screening is presented, assessing the impact of maximum oxygen transfer conditions (OTRmax) within microtiter plate-based cultivation for enhanced throughput. Oxygen-dependent growth and productivity were characterized for C. glutamicum ATCC13032 and C. glutamicum DM1933 (lysine producer). Biomass and lysine product yield are affected at OTRmax below 14 mmol L(-1) h(-1) in a standardized batch process, but not by further increase of OTRmax above this threshold value indicating a reasonable tradeoff between power input and oxygen transfer capacity OTRmax. The described oxygen transfer screening allows comparative determination of metabolic robustness against oxygen transfer limitation and serves identification of potential problems or opportunities later created during scale-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.