Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in H andF NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was ~1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.
In nanoscale metrology, dissipation of the sensor limits its performance. Strong dissipation has a negative impact on sensitivity, and sensor–target interaction even causes relaxation or dephasing of the latter. The weak dissipation of nitrogen-vacancy (NV) sensors in room temperature diamond enables detection of individual target nuclear spins, yet limits the spectral resolution of nuclear magnetic resonance (NMR) spectroscopy to several hundred Hertz, which typically prevents molecular recognition. Here, we use the NV intrinsic nuclear spin as a nonvolatile classical memory to store NMR information, while suppressing sensor back-action on the target using controlled decoupling of sensor, memory, and target. We demonstrate memory lifetimes up to 4 min and apply measurement and decoupling protocols, which exploit such memories efficiently. Our universal NV-based sensor device records single-spin NMR spectra with 13 Hz resolution at room temperature.
Nuclear magnetic resonance (NMR) of single spins have recently been detected by quantum sensors. However, the spectral resolution has been limited by the sensor’s relaxation to a few kHz at room temperature. This can be improved by using quantum memories, at the expense of sensitivity. In contrast, classical signals can be measured with exceptional spectral resolution by using continuous measurement techniques, without compromising sensitivity. When applied to single-spin NMR, it is critical to overcome the impact of back action inherent of quantum measurement. Here we report sequential weak measurements on a single 13C nuclear spin. The back-action causes the spin to undergo a quantum dynamics phase transition from coherent trapping to coherent oscillation. Single-spin NMR at room-temperature with a spectral resolution of 3.8 Hz is achieved. These results enable the use of measurement-correlation schemes for the detection of very weakly coupled single spins.
In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing (QIP). Prominent examples are the nitrogen-vacancy (NV) center in diamond [1][2][3], phosphorous dopants in silicon (Si:P) [4][5][6], rare-earth ions in solids [7][8][9] and VSi-centers in silicon-carbide (SiC) [10][11][12]. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet [13]. Here, we identify and characterize the positively-charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe [13]. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 20. Surprisingly, the new charge state allows switching the optical response of single nodes facilitating full individual addressability.Spin defects are excellent quantum systems. Particularly, defects that possess an electron spin together with a set of well-defined nuclear spins make up excellent, small quantum registers [3,14]. They have been used for demonstrations in quantum information processing [3,15], long distance entanglement [16] and sensing [17]. In such systems the electron spin is used for efficient readout (sensing or interaction with photons) whereas the nuclear spins are used as local quantum bits. Owing to their different magnetic and orbital angular momentum, electron and nuclear spins exhibit orders of magnitude different spin relaxation times. As an example, NV electron spins typically relax on a timescale of ms under ambient conditions [18], while nuclear spins do have at least minutes-long spin relaxation times [19]. However, the hyperfine coupling of nuclear spins to the fast relaxing electron spins in most cases significantly deteriorates the nuclear spin coherence, and eventually its relaxation time, down to time scales similar to the electron spin. For NV centers at room-temperature, this limits coherence times to about 10 ms [17,19,20]. For other hybrid spin ensembles e.g. in Si:P, this strict limit was overcome by ionizing the electron spin donors and thereby removing the electron spin. The resulting T 2 times were on the order of minutes for Si:P ensembles [5] and less than a second for single spins [6,21].It is known that the NV center in diamond exists in various charge states. Besides the widely employed negative charge state (NV − ), it is known to have a stable NV 0 and eventually NV + configurations. NV − has a spin triplet ground state with total spin angular momentum S = 1. Calculations as well as spectroscopic data suggest that the NV 0 ground state is S = 1/2 while NV + is believed to be S = 0, i.e. diamagnetic. Several experiments have demonstrated the optical ionization from NV − to the neutral NV 0 charge-state [13,[22][23][24][25][26...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.