We report on a novel method to create waveguide coupler devices in fused silica by combining the technique of beam shaping with femtosecond laser writing. The method is based on a programmable phase modulator and a dynamic variation of the phase-pattern during the writing process. The major advantage is the possibility to create complex devices in a single sweep by simultaneously writing two or more waveguides with changing separation. The guiding properties and the coupling behavior between the waveguides are investigated.
We report on a method to create multiple waveguides simultaneously in 3D in fused silica. A combination of adaptive beam shaping with femtosecond laser writing is used to write two waveguides with changing separation and depth. The method is based on a programmable phase modulator and a dynamic variation of the phase-pattern during the writing process. The depth difference can be dynamically varied by changing a chirp parameter of the applied phase grating pattern. It can be employed in various photonic devices such as couplers, splitters and interferometers. Here we demonstrate splitters with both outputs ending in different depth.
Abstract:We report on femtosecond nanosurgery of fluorescently labeled structures in cells with a spatially superresolved laser beam. The focal spot width is reduced using phase filtering applied with a programmable phase modulator. A comprehensive statistical analysis of the resulting cuts demonstrates an achievable average resolution enhancement of 30 %.
We report on substantial pulse energy increase in Yb:KYW femtosecond laser oscillators by utilizing multiple laser crystals for an enhanced net-gain at higher pump power. The two-crystal oscillator generates pulse energies of 7 µJ at 1 MHz repetition rate which is, to our knowledge the highest energy ever reported from an Yb-doped tungstate fs-laser oscillator. The external pulse compression yields a pulse duration of 416 fs with a peak power of 12 MW being enough for stable white light generation in YAG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.