Bone regeneration is a highly complex physiological process regulated by several factors. In particular, bone-mimicking extracellular matrix and available osteogenic growth factors such as bone morphogenetic protein (BMP) have been regarded as key contributors for bone regeneration. In this study, we developed a biomimetic hybrid scaffold (CEGH) with sustained release of BMP-2 that would result in enhanced bone formation. This hybrid scaffold, composed of BMP-2-loaded cryoelectrospun poly(εcaprolactone) (PCL) (CE) surrounded by a macroporous gelatin/ heparin cryogel (GH), is designed to overcome the drawbacks of the relatively weak mechanical properties of cryogels and poor biocompatibility and hydrophobicity of electrospun PCL. The GH component of the hybrid scaffold provides a hydrophilic surface to improve the biological response of the cells, while the CE component increases the mechanical strength of the scaffold to provide enhanced mechanical support for the defect area and a stable environment for osteogenic differentiation. After analyzing characteristics of the hybrid scaffold such as hydrophilicity, pore difference, mechanical properties, and surface charge, we confirmed that the hybrid scaffold shows enhanced cell proliferation rate and apatite formation in simulated body fluid. Then, we evaluated drug release kinetics of CEGH and confirmed the sustained release of BMP-2. Finally, the enhanced osteogenic differentiation of CEGH with sustained release of BMP-2 was confirmed by Alizarin Red S staining and real-time PCR analysis.
Repair or reconstruction of a degenerated or injured acetabular labrum is essential to the stability and health of the hip joint. Current methods for restoration fail to reproduce the structure and mechanical properties of the labrum. In this study, we characterized the structure and tensile mechanical properties of melt-electrowritten polycaprolactone scaffolds of varying architectures and assessed the labrum cell compatibility of selected graft candidates. Cell compatibility was assessed using immunofluorescence of the actin skeleton. First, labrum explants were co-cultured with scaffold specimen to investigate the scaffold compatibility with primary cells. Second, effects of pore size on pre-cultured seeded labrum cells were studied. Third, cell compatibility under dynamic stretching was examined. Grid-like structures showed favorable tensile properties with decreasing fibre spacing. Young’s moduli ranging from 2.33 ± 0.34 to 13.36 ± 2.59 MPa were measured across all structures. Primary labrum cells were able to migrate from co-cultured labrum tissue specimens into the scaffold and grow in vitro. Incorporation of small-diameter-fibre and interfibre spacing improved cell distribution and cell spreading, whereas mechanical properties were only marginally affected. Wave-patterned constructs reproduced the non-linear elastic behaviour of native labrum tissue and, therefore, allowed for physiological cyclic tensile strain but showed decreased cell compatibility under dynamic loading. In conclusion, melt-electrowritten polycaprolactone scaffolds are promising candidates for labral grafts; however, further development is required to improve both the mechanical and biological compatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.