[(18)F]Fluspidine demonstrated favourable target affinity and specificity as well as metabolic stability both in vitro and in animal experiments. The in vivo properties of [(18)F]fluspidine offer a high potential of this radiotracer for neuroimaging and quantitation of σ(1) receptors in vivo.
Cyclic nucleotide phosphodiesterases (PDEs) are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET) in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-)clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.
After synthesis of fluorine-18 labelled analogues by [18F]fluorobenzoylation at the alpha-amino group, biodistribution and elimination of individual advanced glycation endproducts, namely N epsilon-carboxymethyllysine and N epsilon-carboxyethyllysine, were studied in comparison to lysine in rats after intravenous injection using positron emission tomography (PET). The [18F]radiofluorinated amino acids were fast distributed via the blood, followed by a rapid excretion through the kidneys. Elimination kinetics were similar for both AGEs and lysine. For CML and CEL, but not for lysine, a temporary liver accumulation could be observed, which was not connected with any metabolisation or enterohepatic circulation. No further accumulation in any tissues was observable, indicating that increased tissue levels of CML or CEL, which have been described for certain disorders, are exclusively derived from endogenous origin and should not depend on a dietary intake. However, under uremic conditions, an impaired kidney function might result in a significant increase of the AGE-load of blood and tissues. PET based on 18F-labelled AGEs proved to be a promising tool to elucidate the physiological fate of post-translationally modified amino acids and to clarify the role of AGEs as possible "glycotoxins".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.