Isogeometric analysis is applied to boundary integral equations corresponding to boundary-value problems governed by Laplace's equation. It is shown that the smoothness of geometric parametrizations central to computer-aided design can be exploited for regularizing integral operators to obtain high-order collocation methods involving superior approximation and numerical integration schemes. The regularization is applicable to both singular and hyper-singular integral equations, and as a result one can formulate the governing integral equations so that the corresponding linear algebraic equations are well-conditioned. It is demonstrated that the proposed approach allows one to compute accurate approximate solutions which optimally converge to the exact ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.