We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named 'Titan', a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematically reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used 'crustal corrections'. We used data from 253 earthquakes in the magnitude range 5.8 ≤ M w ≤ 7.0. We started inversions by combining ∼30 s body-wave data with ∼60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ∼17 s body waves with ∼45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor-and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the resolution of continentalscale studies in some areas, for example, underneath Yellowstone. This is a consequence of our multiscale smoothing strategy in which we define our smoothing operator as a function of the approximate Hessian kernel, thereby smoothing gradients less wherever we have good ray coverage, such as underneath North America.
We present ASDF, the Adaptable Seismic Data Format, a modern and practical data format for all branches of seismology and beyond. The growing volume of freely available data coupled with ever expanding computational power opens avenues to tackle larger and more complex problems. Current bottlenecks include inefficient resource usage and insufficient data organization. Properly scaling a problem requires the resolution of both these challenges, and existing data formats are no longer up to the task. ASDF stores any number of synthetic, processed or unaltered waveforms in a single file. A key improvement compared to existing formats is the inclusion of comprehensive meta information, such as event or station information, in the same file. Additionally, it is also usable for any non-waveform data, for example, cross-correlations, adjoint sources or receiver functions. Last but not least, full provenance information can be stored alongside each item of data, thereby enhancing reproducibility and accountability. Any data set in our proposed format is self-describing and can be readily exchanged with others, facilitating collaboration. The utilization of the HDF5 container format grants efficient and parallel I/O operations, integrated compression algorithms and check sums to guard against data corruption. To not reinvent the wheel and to build upon past developments, we use existing standards like QuakeML, StationXML, W3C PROV and HDF5 wherever feasible. Usability and tool support are crucial for any new format to gain acceptance. We developed mature C/Fortran and Python based APIs coupling ASDF to the widely used SPECFEM3D_GLOBE and ObsPy toolkits.
Many scientific problems require multiple distinct computational tasks to be executed in order to achieve a desired solution. We introduce the Ensemble Toolkit (EnTK) to address the challenges of scale, diversity and reliability they pose. We describe the design and implementation of EnTK, characterize its performance and integrate it with two exemplar use cases: seismic inversion and adaptive analog ensembles. We perform nine experiments, characterizing EnTK overheads, strong and weak scalability, and the performance of the two use case implementations, at scale and on production infrastructures. We show how EnTK meets the following general requirements: (i) implementing dedicated abstractions to support the description and execution of ensemble applications; (ii) support for execution on heterogeneous computing infrastructures; (iii) efficient scalability up to O(10 4 ) tasks; and (iv) task-level fault tolerance. We discuss novel computational capabilities that EnTK enables and the scientific advantages arising thereof. We propose EnTK as an important addition to the suite of tools in support of production scientific computing.
A formula is given for the propagation of errors during matrix inversion. An explicit calculation for a 2 × 2 matrix using both the formula and a Monte Carlo calculation are compared. A prescription is given to determine when a matrix with uncertain elements is sufficiently nonsingular for the calculation of the covariances of the inverted matrix elements to be reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.