Using specific antibodies and cDNA probes, we have investigated, in rat basal ganglia, the distribution and the regulation of the expression of the alpha subunits of Gs and G(olf), two GTP-binding proteins (G-proteins) that stimulate adenylyl cyclase. We confirmed that G(olf) alpha is highly expressed in caudate-putamen, nucleus accumbens, and olfactory tubercle, whereas Gs alpha is less abundant in these areas than in the other brain regions. Intrastriatal injections of quinolinic acid decreased dramatically the levels of G(olf) alpha protein in the striatum and the substantia nigra, and those of G(olf) alpha mRNA in the striatum. Retrograde lesions of striatonigral neurons with volkensin reduced markedly the levels of D1 dopamine (DA) binding sites, as well as those of G(olf) alpha protein and mRNA in the striatum, without altering D2 binding sites. In contrast, both types of lesions increased the levels of Gs alpha protein in the striatum and substantia nigra. Immunocytochemistry showed the presence of G(olf) alpha protein in striatal medium-sized neurons and in several other neuronal populations. These results demonstrate that striatonigral neurons contain high levels of G(olf) alpha and little, if any, Gs alpha, suggesting that the coupling of D1 receptor to adenylyl cyclase is provided by G(olf) alpha. The levels of G(olf) alpha were five- to sixfold higher in the striatum than in the substantia nigra, indicating a preferential localization of G(olf) alpha in the somatodendritic region of striatonigral neurons and providing a basis for the low efficiency of D1 receptor coupling in the substantia nigra. Six weeks after 6-hydroxydopamine lesions of DA neurons, an increase in G(olf) alpha (+53%) and Gs alpha (+64%) proteins was observed in the striatum. This increase in G(olf) alpha levels may account for the DA-activated adenylyl cyclase supersensitivity, without change in D1 receptors density, that follows destruction of DA neurons. Fine regulation of the levels of G(olf) alpha in physiological or pathological situations may be a critical parameter for the efficiency of DA neurotransmission.
Promiscuous expression of tissue-restricted auto-antigens in the thymus imposes T-cell tolerance and provides protection from autoimmune diseases. Promiscuous expression of a set of self-antigens occurs in medullary thymic epithelial cells and is partly controlled by the autoimmune regulator (AIRE), a nuclear protein for which loss-of-function mutations cause the type 1 autoimmune polyendocrine syndrome. However, additional factors must be involved in the regulation of this promiscuous expression. Here we describe a mechanism controlling thymic transcription of a prototypic tissue-restricted human auto-antigen gene, CHRNA1. This gene encodes the alpha-subunit of the muscle acetylcholine receptor, which is the main target of pathogenic auto-antibodies in autoimmune myasthenia gravis. On re-sequencing the CHRNA1 gene, we identified a functional bi-allelic variant in the promoter that is associated with early onset of disease in two independent human populations (France and United Kingdom). We show that this variant prevents binding of interferon regulatory factor 8 (IRF8) and abrogates CHRNA1 promoter activity in thymic epithelial cells in vitro. Notably, both the CHRNA1 promoter variant and AIRE modulate CHRNA1 messenger RNA levels in human medullary thymic epithelial cells ex vivo and also in a transactivation assay. These findings reveal a critical function of AIRE and the interferon signalling pathway in regulating quantitative expression of this auto-antigen in the thymus, suggesting that together they set the threshold for self-tolerance versus autoimmunity.
Injury to the central nervous system initiates an uncontrolled inflammatory response that results in both tissue repair and destruction. Here, we showed that, in rodents and humans, injury to the spinal cord triggered surface expression of CD95 ligand (CD95L, FasL) on peripheral blood myeloid cells. CD95L stimulation of CD95 on these cells activated phosphoinositide 3-kinase (PI3K) and metalloproteinase-9 (MMP-9) via recruitment and activation of Syk kinase, ultimately leading to increased migration. Exclusive CD95L deletion in myeloid cells greatly decreased the number of neutrophils and macrophages infiltrating the injured spinal cord or the inflamed peritoneum after thioglycollate injection. Importantly, deletion of myeloid CD95L, but not of CD95 on neural cells, led to functional recovery of spinal injured animals. Our results indicate that CD95L acts on peripheral myeloid cells to induce tissue damage. Thus, neutralization of CD95L should be considered as a means to create a controlled beneficial inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.