We discuss a general procedure to construct an integrable real-time Trotterization of interacting lattice models. As an illustrative example, we consider a spin-1/2 chain, with continuous time dynamics described by the isotropic (XXX) Heisenberg Hamiltonian. For periodic boundary conditions, local conservation laws are derived from an inhomogeneous transfer matrix, and a boost operator is constructed. In the continuous time limit, these local charges reduce to the known integrals of motion of the Heisenberg chain. In a simple Kraus representation, we also examine the nonequilibrium setting, where our integrable cellular automaton is driven by stochastic processes at the boundaries. We show explicitly how an exact nonequilibrium steady-state density matrix can be written in terms of a staggered matrix product ansatz, and we propose quasilocal conservation laws for the model with periodic boundary conditions. This simple Trotterization scheme, in particular in the open system framework, could prove to be a useful tool for experimental simulations of the lattice models in terms of trapped ion and atom optics setups.
We study the matrix ansatz in the quantum group framework, applying integrable systems techniques to statistical physics models. We start by reviewing the two approaches, and then show how one can use the former to get new insight on the latter. We illustrate our method by solving a model of reaction-diffusion. An eigenvector for the transfer matrix for the XXZ spin chain with non-diagonal boundary is also obtained using a matrix ansatz.
In this paper, we use rigorous numerics to compute several global smooth branches of steady states for a system of three reaction-diffusion PDEs introduced by Iida et al. [J. Math. Biol., 53, 617-641 (2006)] to study the effect of cross-diffusion in competitive interactions. An explicit and mathematically rigorous construction of a global bifurcation diagram is done, except in small neighborhoods of the bifurcations. The proposed method, even though influenced by the work of van den Berg et al. [Math. Comp., 79, 1565-1584], introduces new analytic estimates, a new gluing-free approach for the construction of global smooth branches and provides a detailed analysis of the choice of the parameters to be made in order to maximize the chances of performing successfully the computational proofs.
We present an explicit time-dependent matrix product ansatz (tMPA) which describes the time-evolution of any local observable in an interacting and deterministic lattice gas, specifically for the rule 54 reversible cellular automaton of [Bobenko et al. Commun. Math. Phys. 158, 127 (1993)]. Our construction is based on an explicit solution of real-space real-time inverse scattering problem. We consider two applications of this tMPA. Firstly, we provide the first exact and explicit computation of the dynamic structure factor in an interacting deterministic model, and secondly, we solve the extremal case of the inhomogeneous quench problem, where a semi-infinite lattice in the maximum entropy state is joined with an empty semi-infinite lattice. Both of these exact results rigorously demonstrate a coexistence of ballistic and diffusive transport behaviour in the model, as expected for normal fluids.
We give a complete classification of integrable Markovian boundary conditions for the asymmetric simple exclusion process with two species (or classes) of particles. Some of these boundary conditions lead to non-vanishing particle currents for each species. We explain how the stationary state of all these models can be expressed in a matrix product form, starting from two key components, the Zamolodchikov-Faddeev and Ghoshal-Zamolodchikov relations. This statement is illustrated by studying in detail a specific example, for which the matrix Ansatz (involving 9 generators) is explicitly constructed and physical observables (such as currents, densities) calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.