Over the past decade, spectral or dual-energy CT has gained relevancy, especially in oncological radiology. Nonetheless, its use in the radiotherapy (RT) clinic remains limited. This review article aims to give an overview of the current state of spectral CT and to explore opportunities for applications in RT. In this article, three groups of benefits of spectral CT over conventional CT in RT are recognized. Firstly, spectral CT provides more information of physical properties of the body, which can improve dose calculation. Furthermore, it improves the visibility of tumors, for a wide variety of malignancies as well as organs-at-risk OARs, which could reduce treatment uncertainty. And finally, spectral CT provides quantitative physiological information, which can be used to personalize and quantify treatment.
Objectives
To investigate the diagnostic impact and performance of spectral dual-layer detector CT in the detection and characterization of cancer compared to conventional CE-CT.
Methods
In a national workup program for occult cancer, 503 patients (286 females and 217 males) were prospectively enrolled for a contrast-enhanced spectral CT scan. The readings were performed with and without spectral data available. A minimum of 3 months between interpretations was implemented to minimize recall bias. The sequence of reads for the individual patient was randomized. Readers were blinded for patient identifiers and clinical outcome. Two radiologists with 9 and 33 years of experience performed the readings in consensus. If disagreement, a third radiologist with 11 years of experience determined the outcome of the reading
Results
Significantly more cancer findings were identified on the spectral reading. In 73 cases of proven cancer, we found a sensitivity of 89% vs 77% and a specificity of 77% vs 83% on spectral CT compared to conventional CT. A slight increase in reading time in spectral images of 82 s was found (382 vs 300, p < 0.001). For all cystic lesions, the perceived diagnostic certainty increased from 30% being completely certain to 96% most pronounced in the kidney, liver, thyroid, and ovaries. And adding the spectral information to the reading gave a decrease in follow-up examination for diagnostic certainty (0.25 vs 0.81 per reading, p < 0.001).
Conclusion
The use of contrast-enhanced spectral CT increases the confidence of the radiologists in correct characterization of various lesions and minimizes the need for supplementary examinations.
Key Points
• Spectral CT is associated with a higher sensitivity, but a slightly lower specificity compared to conventional CT.
• Spectral CT increases the confidence of the radiologists.
• The need for supplementary examinations is decreased, with only a slight increase in reading times.
The purpose of this study was to develop a method to use amplitude binned 4D-CT (A-4D-CT) data for the construction of mid-position CT data and to compare the results with data created from phase-binned 4D-CT (P-4D-CT) data. For the latter purpose we have developed two measures which describe the regularity of the 4D data and we have tried to correlate these measures with the regularity of the external respiration signal. 4D-CT data was acquired for 27 patients on a combined PET-CT scanner. The 4D data were reconstructed twice, using phase and amplitude binning. The 4D frames of each dataset were registered using a quadrature-based optical flow method. After registration the deformation vector field was repositioned to the mid-position. Since amplitude-binned 4D data does not provide temporal information, we corrected the mid-position for the occupancy of the bins. We quantified the differences between the two mid-position datasets in terms of tumour offset and amplitude differences. Furthermore, we measured the standard deviation of the image intensity over the respiration after registration (σregistration) and the regularity of the deformation vector field (Delta J) to quantify the quality of the 4D-CT data. These measures were correlated to the regularity of the external respiration signal (σsignal).The two irregularity measures, Delta J and σregistration, were dependent on each other (p<0.0001, R2=0.80 for P-4D-CT, R2=0.74 for A-4D-CT). For all datasets amplitude binning resulted in lower Delta J and σregistration and large decreases led to visible quality improvements in the mid-position data. The quantity of artefact decrease was correlated to the irregularity of the external respiratory signal.The average tumour offset between the phase and amplitude binned mid-position without occupancy correction was 0.42 mm in the caudal direction (10.6% of the amplitude). After correction this was reduced to 0.16 mm in caudal direction (4.1% of the amplitude). Similar relative offsets were found at the diaphragm. We have devised a method to use amplitude binned 4D-CT to construct motion model and generate a mid-position planning CT for radiotherapy treatment purposes. We have decimated the systematic offset of this mid-position model with a motion model derived from P-4D-CT. We found that the A-4D-CT led to a decrease of local artefacts and that this decrease was correlated to the irregularity of the external respiration signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.