A big challenge of autonomous mobility is guaranteeing safety in all possible extreme and unexpected scenarios. For the last 25 years, the sector therefore focused on improving the automation functions. Nevertheless, autonomous mobility is still not part of daily life. The 5G-Blueprint project follows an alternative approach: direct control teleoperation. This concept relies on 5G connectivity to remove the physical coupling between the human driver or sailor and the controlled vehicle or vessel. This way, automation and teleoperation can be combined as complementary technologies, assigning them to different segments of a single trajectory, realizing driverless mobility in a safe, scalable, and cost-efficient manner. However, this mode of operation brings demanding connectivity requirements, such as high uplink bandwidth, low latency and ultra-reliability at the same time, for which the potential of 5G needs to be studied and explored. In this paper, we present our performance validation strategies to pursue 5G-enhanced teleoperation in real-life environment (e.g., public roads, busy sea ports), including some initial results that we collected during the in-country piloting phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.