The microbiota of the small intestine is poorly known because of difficulties in sampling. In this study, we examined whether the organisms cultured from the jejunum and feces resemble each other. Small-intestinal fluid samples were collected from 22 beagle dogs with a permanent jejunal fistula in parallel with fecal samples. In addition, corresponding samples from seven of the dogs were collected during a 4-week period (days 4, 10, 14, and 28) to examine the stability of the microbiota. In the jejunal samples, aerobic/facultative and anaerobic bacteria were equally represented, whereas anaerobes dominated in the fecal samples. Despite lower numbers of bacteria in the jejunum (range, 10 2 to 10 6 CFU/g) than in feces (range, 10 8 to 10 11 CFU/g), some microbial groups were more prevalent in the small intestine: staphylococci, 64% versus 36%; nonfermentative gramnegative rods, 27% versus 9%; and yeasts, 27% versus 5%, respectively. In contrast, part of the fecal dominant microbiota (bile-resistant Bacteroides spp., Clostridium hiranonis-like organisms, and lactobacilli) was practically absent in the jejunum. Many species were seldom isolated simultaneously from both sample types, regardless of their overall prevalence. In conclusion, the small intestine contains a few bacterial species at a time with vastly fluctuating counts, opposite to the results obtained for the colon, where the major bacterial groups remain relatively constant over time. Qualitative and quantitative differences between the corresponding jejunal and fecal samples indicate the inability of fecal samples to represent the microbiotas present in the upper gut.
Antibiotics that are excreted into the intestinal tract promote antibiotic resistance by exerting selective pressure on the gut microbiota. Using a beagle dog model, we show that an orally administered targeted recombinant -lactamase enzyme eliminates the portion of parenteral ampicillin that is excreted into the small intestine, preventing ampicillin-induced changes to the fecal microbiota without affecting ampicillin levels in serum. In dogs receiving ampicillin, significant disruption of the fecal microbiota and the emergence of ampicillin-resistant Escherichia coli and TEM genes were observed, whereas in dogs treated with ampicillin in combination with an oral -lactamase, these did not occur. These results suggest a new strategy for reducing antimicrobial resistance in humans.
The majority of multiparous parturients found ITA adequate for pain relief during delivery. However, modifications are required in terms of improved timing, reliability and duration of analgesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.