Abstract-In this paper, we discuss resource sharing, a key dimension in mmWave network design in which spectrum, access and/or network infrastructure resources can be shared by multiple operators. It is argued that this sharing paradigm will be essential to fully exploit the tremendous amounts of bandwidth and the large number of antenna degrees of freedom available in these bands, and to provide statistical multiplexing to accommodate the highly variable nature of the traffic. In this paper, we investigate and compare various sharing configurations in order to capture the enhanced potential of mmWave communications. Our results reflect both the technical and the economical aspects of the various sharing paradigms. We deliver a number of key insights, corroborated by detailed simulations, which include an analysis of the effects of the distinctive propagation characteristics of the mmWave channel, along with a rigorous multi-antenna characterization. Key findings of this study include (i) the strong dependence of the comparative results on channel propagation and antenna characteristics, and therefore the need to accurately model them, and (ii) the desirability of a full spectrum and infrastructure sharing configuration, which may result in increased user rate as well as in economical advantages for both service provider.
Millimeter-wave (mmWave) bands will play an important role in 5G wireless systems. The system performance can be assessed by using models from stochastic geometry that cater for the directivity in the desired signal transmissions as well as the interference, and by calculating the signal-to-interferenceplus-noise ratio (SINR) coverage. Nonetheless, the accuracy of the existing coverage expressions derived through stochastic geometry may be questioned, as it is not clear whether they capture the impact of the detailed mmWave channel and antenna features. In this study, we propose an SINR coverage analysis framework that includes realistic channel model and antenna element radiation patterns. We introduce and estimate two parameters, aligned gain and misaligned gain, associated with the desired signal beam and the interfering signal beam, respectively. The distributions of these gains are used to determine the distribution of the SINR which is compared with the corresponding SINR coverage calculated via system-level simulations. The results show that both aligned and misaligned gains can be modeled as exponentiallogarithmically distributed random variables with the highest accuracy, and can further be approximated as exponentially distributed random variables with reasonable accuracy. These approximations can be used as a tool to evaluate the systemlevel performance of various 5G connectivity scenarios in the mmWave band.
While spectrum at millimeter wave (mmWave) frequencies is less scarce than at traditional frequencies below 6 GHz, still it is not unlimited, in particular if we consider the requirements from other services using the same band and the need to license mmWave bands to multiple mobile operators. Therefore, an efficient spectrum access scheme is critical to harvest the maximum benefit from emerging mmWave technologies. In this paper, we introduce a new hybrid spectrum access scheme for mmWave networks, where data is aggregated through two mmWave carriers with different characteristics. In particular, we consider the case of a hybrid spectrum scheme between a mmWave band with exclusive access and a mmWave band where spectrum is pooled between multiple operators. To the best of our knowledge, this is the first study proposing hybrid spectrum access for mmWave networks and providing a quantitative assessment of its benefits. Our results show that this approach provides major advantages with respect to traditional fully licensed or fully unlicensed spectrum access schemes, though further work is needed to achieve a more complete understanding of both technical and non technical implications
Large antenna arrays and millimeter-wave (mmWave) frequencies have been attracting growing attention as possible candidates to meet the high requirements of future 5G mobile networks. In view of the large path loss attenuation in these bands, beamforming techniques that create a beam in the direction of the user equipment are essential to perform the transmission. For this purpose, in this paper, we aim at characterizing realistic antenna radiation patterns, motivated by the need to properly capture mmWave propagation behaviors and understand the achievable performance in 5G cellular scenarios. In particular, we highlight how the performance changes with the radiation pattern used. Consequently, we conclude that it is crucial to use an accurate and realistic radiation model for proper performance assessment and system dimensioning.
The next generations of vehicles will require data transmission rates in the order of terabytes per driving hour, to support advanced automotive services. This unprecedented amount of data to be exchanged goes beyond the capabilities of existing communication technologies for vehicular communication and calls for new solutions. A possible answer to this growing demand for ultra-high transmission speeds can be found in the millimeter-wave (mmWave) bands which, however, are subject to high signal attenuation and challenging propagation characteristics. In particular, mmWave links are typically directional, to benefit from the resulting beamforming gain, and require precise alignment of the transmitter and the receiver beams, an operation which may increase the latency of the communication and lead to deafness due to beam misalignment. In this paper, we propose a stochastic model for characterizing the beam coverage and connectivity probability in mmWave automotive networks. The purpose is to exemplify some of the complex and interesting tradeoffs that have to be considered when designing solutions for vehicular scenarios based on mmWave links. The results show that the performance of the automotive nodes in highly mobile mmWave systems strictly depends on the specific environment in which the vehicles are deployed, and must account for several automotive-specific features such as the nodes speed, the beam alignment periodicity, the base stations density and the antenna geometry. Index TermsVehicular communication (V2X), millimeter wave (mmWave), stochastic geometry, connectivity analysis, mobility.Given the simplicity of their topology and their high level of automation, highway scenarios have been heavily investigated in the literature for evaluating the connectivity performance of moving nodes in vehicular networks [11]-[13]. In particular, [11] analyzes the performance of multi-hop transport protocols in a multi-lane highway environment, with particular emphasis on the effect (in terms of throughput and latency) of tuning the transmission power. In [12], the authors conducted a realistic analysis of the vehicular ad hoc network topology by integrating realistic microscopic mobility traces and real database traffic demand with realistic channel models, taking into account the effect of vehicles on the received signal power. The article in [13] provides a closed form expression of the achievable throughput of infrastructure-based vehicular networks under a cooperative communication strategy, exploring the combined use of V2I and V2V communications to facilitate the data transmission. However, such analyses strictly deal with DSRC systems operating at 5.8 GHz, whose propagation characteristics are completely different from those of mmWave channels. Furthermore, in conventional vehicular systems, transmissions are mostly omnidirectional (though beamforming or other directional transmissions can be performed after a physical link between the nodes has been established). These solutions are therefore unsuitable fo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.