Combining the complementary strengths of several algorithms through portfolio approaches has been demonstrated to be effective in solving a wide range of AI problems. Notably, portfolio techniques have been prominently applied to suboptimal (satisficing) AI planning.\ud \ud Here, we consider the construction of sequential planner portfolios for domainindependent optimal planning. Specifically, we introduce four techniques (three of which are dynamic) for per-instance planner schedule generation using problem instance features, and investigate the usefulness of a range of static and dynamic techniques for combining planners. Our extensive empirical analysis demonstrates the benefits of using static and dynamic sequential portfolios for optimal planning, and provides insights on the most suitable conditions for their fruitful exploitation
Abstract-Combining the complementary strengths of several algorithms through portfolio approaches has been demonstrated to be effective in solving a wide range of AI problems. Notably, portfolio techniques have been prominently applied to suboptimal (satisficing) AI planning.Here, we consider the construction of sequential planner portfolios for (domain-independent) optimal planning. Specifically, we introduce four techniques (three of which are dynamic) for per-instance planner schedule generation using problem instance features, and investigate the usefulness of a range of static and dynamic techniques for combining planners. Our extensive experimental analysis demonstrates the benefits of using static and dynamic sequential portfolios for optimal planning, and provides insights on the most suitable conditions for their fruitful exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.