We review the 2014 International Planning Competition (IPC-2014), the eighth in a series of competitions starting in 1998. IPC-2014 was held in three separate parts to assess state-of-the-art in three prominent areas of planning research: the deterministic (classical) part (IPCD), the learning part (IPCL), and the probabilistic part (IPPC). Each part evaluated planning systems in ways that pushed the edge of existing planner performance by introducing new challenges, novel tasks, or both. The competition surpassed again the number of competitors than its predecessor, highlighting the competition’s central role in shaping the landscape of ongoing developments in evaluating planning systems.
Abstract. This paper presents a novel SAT-based approach for the computation of extensions in abstract argumentation, with focus on preferred semantics, and an empirical evaluation of its performances. The approach is based on the idea of reducing the problem of computing complete extensions to a SAT problem and then using a depth-first search method to derive preferred extensions. The proposed approach has been tested using two distinct SAT solvers and compared with three state-of-the-art systems for preferred extension computation. It turns out that the proposed approach delivers significantly better performances in the large majority of the considered cases.
Abstract-Decision Support Systems (DSSs) are increasingly exploited in the area of prognostic evaluations. For predicting the effect of therapies on patients, the trend is now to use image features, i.e. information that can be automatically computed by considering images resulting by analysis. The DSSs application as predictive tools is particularly suitable for cancer treatment, given the peculiarities of the disease -which is highly localised and lead to significant social costs-and the large number of images that are available for each patient.At the state of the art, there exists tools that allow to handle image features for prognostic evaluations, but they are not designed for medical experts. They require either a strong engineering or computer science background since they do not integrate all the required functions, such as image retrieval and storage. In this paper we fill this gap by proposing Moddicom, a user-friendly complete library specifically designed to be exploited by physicians. A preliminary experimental analysis, performed by a medical expert that used the tool, demonstrates the efficiency and the effectiveness of Moddicom.
Competition Reports102 AI MAGAZINE C omputational models of argumentation are an active research discipline within artificial intelligence that has grown since the beginning of the 1990s (Dung 1995). While still a young field when compared to areas such as SAT solving and logic programming, the argumentation community is very active, with a conference series (COMMA, which began in 2006) and a variety of workshops and special issues of journals. Argumentation has also worked its way into a variety of applications. For example, Williams et al. (2015) described how argumentation techniques are used for recommending cancer treatments, while Toniolo et al. (2015) detail how argumentation-based techniques can support critical thinking and collaborative scientific inquiry or intelligence analysis.Many of the problems that argumentation deals with are computationally difficult, and applications utilizing argumentation therefore require efficient solvers. To encourage this line of research, we organised the First International Competition on Computational Models of Argumentation (ICCMA), with the intention of assessing and promoting state-of-the-art solvers for abstract argumentation problems, and to identify families of challenging benchmarks for such solvers.
Following the personalized medicine paradigm, there is a growing interest in medical agents capable of predicting the effect of therapies on patients, by exploiting the amount of data that is now available for each patient. In disciplines like oncology, where images and scans are available, the exploitation of medical images can provide an additional source of potentially useful information. The study and analysis of features extracted by medical images, exploited for predictive purposes, is termed radiomics. A number of tools are available for supporting some of the steps of the radiomics process, but there is a lack of approaches which are able to deal with all the steps of the process. In this paper, we introduce a medical agent-based decision support system capable of handling the whole radiomics process. The proposed system is tested on two independent data sets of patients treated for rectal cancer. Experimental results indicate that the system is able to generate highly performant centre-specific predictive model, and show the issues related to differences in data sets collected by different centres, and how such issues can
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.