The Image Biomarker Standardization Initiative validated consensus-based reference values for 169 radiomics features, thus enabling calibration and verification of radiomics software. Key results: • research teams found agreement for calculation of 169 radiomics features derived from a digital phantom and a human lung cancer on CT scan. • Of these 169 candidate radiomics features, good to excellent reproducibility was achieved for 167 radiomics features using MRI, 18F-FDG PET and CT images obtained in 51 patients with soft-tissue sarcoma.
This MR-based, vendor-independent model can be helpful for predicting pCR probability in locally advanced rectal cancer (LARC) patients only using pre-treatment imaging.
The aim of this study was to propose a methodology to investigate the tumour heterogeneity and evaluate its ability to predict pathologically complete response (pCR) after chemo-radiotherapy (CRT) in locally advanced rectal cancer (LARC). This approach consisted in normalising the pixel intensities of the tumour and identifying the different sub-regions using an intensity-based thresholding. The spatial organisation of these subpopulations was quantified using the fractal dimension (FD). This approach was implemented in a radiomic workflow and applied to 198 T2-weighted pre-treatment magnetic resonance (MR) images of LARC patients. Three types of features were extracted from the gross tumour volume (GTV): morphological, statistical and fractal features. Feature selection was performed using the Wilcoxon test and a logistic regression model was calculated to predict the pCR probability after CRT. The model was elaborated considering the patients treated in two institutions: Fondazione Policlinico Universitario "Agostino Gemelli" of Rome (173 cases, training set) and University Medical Centre of Maastricht (25 cases, validation set). The results obtained showed that the fractal parameters of the subpopulations have the highest performance in predicting pCR. The predictive model elaborated had an area under the curve (AUC) equal to 0.77 ± 0.07. The model reliability was confirmed by the validation set (AUC = 0.79 ± 0.09). This study suggests that the fractal analysis can play an important role in radiomics, providing valuable information not only about the GTV structure, but also about its inner subpopulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.