Design of ACM life cycle is defined with respect to traffic load acting on the pavement and road class for a period of about 20 years. In practice, reconstruction is usually pending until the end of the life cycle after which the reconstruction takes place and the original materials are replaced by new materials. Life cycle of the pavement construction in road structure is significantly longer than that of the ACM; it is therefore necessary to consider ACM from a long term viewpoint, that is, exceeding their life expectancy. This paper describes a methodology which consists of analytical calculations, experimental measurements, and optimization of the ACM life cycle with the use of a rehabilitation action to provide new physical properties of pavement surfacing in different periods of the original life cycle. The aim is to attain maximal economic effectiveness, by minimizing financial costs for rehabilitation and maintenance and economic costs of road user. Presented method allows deriving optimal life cycle from various rehabilitation alternatives for particular ACM with the fact that all the necessary parameters are derived from specific experimental measurements and calculations. The method is applicable to all types of ACM materials; however, for each material, it is necessary to carry out the necessary measurements and tests. The article describes the methodology and case study results for a particular type of ACM material.
Ensuring the sustainability of road infrastructure cannot be achieved without the continuous application of new knowledge and approaches within individual management steps. A particularly risky stage in the life cycle of existing roads is the operation phase. High attention is paid to the environmental, financial and social impacts and benefits of individual processes applied by road managers. These processes meet in pavement management systems (PMS), which, however, cannot work reliably without the necessary input data. Information on the development of the technical condition of the road can also be included among the most important data. The paper brings the first outputs from several years of research of measurements on the Slovak 1st class road. Its aim is to gradually determine the degradation functions for the needs of Slovak geographical, climatic and transport conditions. The secondary objective is to verify the reliability of non-destructive measurement procedures of the technical condition of the road. Emphasis is placed on the application of such mathematical procedures that can not only reliably bring about the determination of past developments in the roadway, but can also present the expected picture of future developments.
The study presented in this paper investigates the application of asphalt bitumen modification using a fast-reacting SBS polymer at a low modifier percentage. The hypothesis is that a fast-reacting styrene–butadiene–styrene (SBS) polymer that composes only 2% to 3% of the weight of the bitumen modification could extend the life of the pavement surfacing and pavement performance at relatively low input costs, increasing the net present value produced by the pavement during its life cycle. To confirm or refute this hypothesis, two types of road bitumens CA 35/50 and 50/70 were modified with low amounts of fast-reacting SBS polymer with the expectation of attaining properties similar to a 10/40–65 modified bitumen. For each type of unmodified bitumen, bitumen modification and comparative 10/40–65 modified bitumen, the following tests were conducted: needle penetration, softening point—ring and ball test method, and ductility test. The second part of the article focuses on a comparison of asphalt mixtures with different compositions of coarse-grain curves. For each mixture, complex modulus with varying temperatures and fatigue resistances are represented by the Wöhler diagram and compared. Based on in labo testing, the impact of the modification on pavement performance is evaluated. Life cycle changes for each type of modified and unmodified mixtures are quantified as road user costs, and attained benefits are compared with increased construction costs.
The article presents a complex pavement management system method that utilizes a novel optimization method of rehabilitation plans for individual road sections based on asset value optimization. This method is being implemented and tested by the Slovak Road Administration. The performance-based asset value optimization objectives are Socio-Economic Value and Technical Value of Assets, which breaks down into the Value of Structural Condition and Operational Capacity Value. Life cycle cost analysis is used to find the optimal rehabilitation year of individual road sections to optimize the asset value and minimize financial and economic costs while considering the life cycle extension provided by the rehabilitation in a given year. For the method to be reliable, two main preconditions need to be met. First, the residual bearing capacity calculation method needs to be based on rheological parameters of surfacing materials. This is significant because the residual bearing capacity is used for both choosing the correct rehabilitation technology and calculating the life cycle extension by the rehabilitation action. The second precondition is a reliable pavement performance model. This is significant because pavement deterioration is used to calculate road user costs, which serve as a key input to calculate assets’ Socio-Economic and Operational Capacity value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.