The island effect is a well-known evolutionary phenomenon, in which island-dwelling species isolated in a resource-limited environment often modify their size, anatomy, and behaviors compared with mainland relatives. This has been well documented in modern and Cenozoic mammals, but it remains unclear whether older, more primitive Mesozoic mammals responded in similar ways to island habitats. We describe a reasonably complete and well-preserved skeleton of a kogaionid, an enigmatic radiation of Cretaceous island-dwelling multituberculate mammals previously represented by fragmentary fossils. This skeleton, from the latest Cretaceous of Romania, belongs to a previously unreported genus and species that possesses several aberrant features, including an autapomorphically domed skull and one of the smallest brains relative to body size of any advanced mammaliaform, which nonetheless retains enlarged olfactory bulbs and paraflocculi for sensory processing. Drawing on parallels with more recent island mammals, we interpret these unusual neurosensory features as related to the island effect. This indicates that the ability to adapt to insular environments developed early in mammalian history, before the advent of therian mammals, and mammals with insular-related modifications were key components of well-known dwarfed dinosaur faunas. Furthermore, the specimen suggests that brain size reduction, in association with heightened sensory acuity but without marked body size change, is a novel expression of the island effect in mammals.
Islands are noted for the occurrence of aberrant, endemic, and dwarfed taxa (the "island effect"). Late Cretaceous vertebrate assemblages of Romania and elsewhere in Europe are classic examples of island faunas in the fossil record, and are characterized by dwarfed herbivorous dinosaurs and other endemic taxa that are noticeably primitive relative to their mainland contemporaries. Fossils of the predators inhabiting the European paleoislands, however, are exceptionally rare and fragmentary. We describe a new dromaeosaurid theropod, based on an articulated skeleton from the Maastrichtian of Romania, which represents the most complete predatory dinosaur from the middle to Late Cretaceous of Europe. This taxon is characterized by a peculiar body plan, most notably extensive fusion in the hand and distal hindlimb, a highly retroverted pelvis with enlarged femoral muscle attachments, and a pair of hyperextensive pedal claws. However, unlike the island-dwelling herbivorous dinosaurs, its closest relatives are contemporary similar-sized Laurasian taxa, indicating faunal connections between Asia and the European islands late into the Cretaceous. This theropod provides support for the aberrant nature of the Late Cretaceous European island-dwelling dinosaurs, but indicates that predators on these islands were not necessarily small, geographically endemic, or primitive.Dromaeosauridae | endemic | Europe | island fauna | Theropoda
We describe a new taxon of medium-sized (wing span ca. 3 m) azhdarchid pterosaur from the Upper Cretaceous Transylvanian Basin (Sebeş Formation) of Romania. This specimen is the most complete European azhdarchid yet reported, comprising a partially articulated series of vertebrae and associated forelimb bones. The new taxon is most similar to the Central Asian Azhdarcho lancicollis Nessov but possesses a suite of autapomorphies in its vertebrae that include the relative proportions of cervicals three and four and the presence of elongated prezygapophyseal pedicles. The new taxon is interesting in that it lived contemporaneously with gigantic forms, comparable in size to the famous Romanian Hatzegopteryx thambema. The presence of two distinct azhdarchid size classes in a continental depositional environment further strengthens suggestions that these pterosaurs were strongly linked to terrestrial floodplain and wooded environments. To support this discussion, we outline the geological context and taphonomy of our new specimen and place it in context with other known records for this widespread and important Late Cretaceous pterosaurian lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.