The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic ‘core’ supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing). We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact.
We present a detailed morphological description of the type-locality cranial material of Theriosuchus sympiestodon Martin, Rabi, and Csiki, 2010 from the Maastrichtian Densuş-Ciula Formation of the Haţeg Basin, Romania together with new material of isolated cranial elements and teeth from various sites of the same general area. The recognition of several individuals of distinct sizes allows for an assessment of ontogenetic variation in this taxon. New material, consisting of isolated teeth and an incomplete maxilla with in situ teeth, coming from various late Campanian/early Maastrichtian sites in southern France is referable to ?Theriosuchus sp. and hints to a rare but widespread distribution of Theriosuchus in the Late Cretaceous European archipelago.
The island effect is a well-known evolutionary phenomenon, in which island-dwelling species isolated in a resource-limited environment often modify their size, anatomy, and behaviors compared with mainland relatives. This has been well documented in modern and Cenozoic mammals, but it remains unclear whether older, more primitive Mesozoic mammals responded in similar ways to island habitats. We describe a reasonably complete and well-preserved skeleton of a kogaionid, an enigmatic radiation of Cretaceous island-dwelling multituberculate mammals previously represented by fragmentary fossils. This skeleton, from the latest Cretaceous of Romania, belongs to a previously unreported genus and species that possesses several aberrant features, including an autapomorphically domed skull and one of the smallest brains relative to body size of any advanced mammaliaform, which nonetheless retains enlarged olfactory bulbs and paraflocculi for sensory processing. Drawing on parallels with more recent island mammals, we interpret these unusual neurosensory features as related to the island effect. This indicates that the ability to adapt to insular environments developed early in mammalian history, before the advent of therian mammals, and mammals with insular-related modifications were key components of well-known dwarfed dinosaur faunas. Furthermore, the specimen suggests that brain size reduction, in association with heightened sensory acuity but without marked body size change, is a novel expression of the island effect in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.