Collectively moving animals often display a high degree of synchronization and cohesive group-level formations, such as elongated schools of fish. These global patterns emerge as the result of localized rules of interactions. However, the exact relationship between speed, polarization, neighbour positioning and group structure has produced conflicting results and is largely limited to modelling approaches. This hinders our ability to understand how information spreads between individuals, which may determine the collective functioning of groups. We tested how speed interacts with polarization and positional composition to produce the elongation observed in moving groups of fish as well as how this impacts information flow between individuals. At the local level, we found that increases in speed led to increases in alignment and shifts from lateral to linear neighbour positioning. At the global level, these increases in linear neighbour positioning resulted in elongation of the group. Furthermore, mean pairwise transfer entropy increased with speed and alignment, implying an adaptive value to forming faster, more polarized and linear groups. Ultimately, this research provides vital insight into the mechanisms underlying the elongation of moving animal groups and highlights the functional significance of cohesive and coordinated movement.
Social aggregation is a widespread and important phenomenon among fishes. Understanding the questions of why and how aggregations form and are subsequently maintained is a central goal for behavioral ecologists. Research in this field has shown that aggregations are typically structured, non-random associations. This indicates that fish are able to differentiate between potential group-mates and that this ability mediates their association preferences, and, ultimately, the composition of their groups. In this review, we examine the characteristics that influence the expression of social attraction among fishes, before going on to describe the recognition mechanisms that underpin social attraction. Finally, we highlight a number of outstanding questions in the field with a view to generating a more complete understanding of social aggregation in fishes.
Guppies have successfully established populations in places with thermal regimes very different from the Tropical conditions in their native range. This indicates a remarkable capacity for thermal adaptation. Given their vulnerability to predation as juveniles, acute changes in temperature, which can alter predator-prey relationships, can impact juvenile survival and have amplified consequences at the population level. To understand how temperature may impact juvenile survival and gain insight into their success as an invasive species, we researched the effect of acute temperature changes on the routine swimming behaviour of juvenile guppies. Using a novel 3-dimensional tracking technique, we calculated 4 routine swimming parameters, speed, depth, and variation in speed or depth, at 6 different test temperatures (17, 20, 23, 26, 29, or 32°C). These temperatures cover their natural thermal range and also extended past it in order to include upper and lower thermal limits. Using model selection, we found that body length and temperature had a significant positive relationship with speed. Variation in speed decreased with rising temperatures and fish swam slightly closer to the bottom at higher temperatures. All juveniles increased variation in depth at higher temperatures, though larger individuals maintained slightly more consistent depths. Our results indicate that guppies have a large thermal range and show substantial plasticity in routine swimming behaviours, which may account for their success as an invasive species.
In the wild, prey species often live in the vicinity of predators, rendering the ability to assess risk on a moment-to-moment basis crucial to survival. Visual cues are important as they allow prey to assess predator species, size, proximity and behaviour. However, few studies have explicitly examined prey's ability to assess risk based on predator behaviour and orientation. Using mosquitofish, Gambusia holbrooki , and their predator, jade perch, Scortum barcoo , under controlled conditions, we provide some of the first fine-scale characterization of how prey adapt their behaviour according to their continuous assessment of risk based on both predator behaviour and angular distance to the predator's mouth. When these predators were inactive and posed less of an immediate threat, prey within the attack cone of the predator showed reductions in speed and acceleration characteristic of predator-inspection behaviour. However, when predators became active, prey swam faster with greater acceleration and were closer together within the attack cone of predators. Most importantly, this study provides evidence that prey do not adopt a uniform response to the presence of a predator. Instead, we demonstrate that prey are capable of rapidly and dynamically updating their assessment of risk and showing fine-scale adjustments to their behaviour.
To effectively balance the need to forage against the need to avoid predation, animals should utilize information from both their physical and social environments. However, most studies have considered these factors in isolation and few have investigated how animals change the use of these cues temporally. Using novel 3D modeling of the environment and 3D observations of fish movement, we investigated how local abiotic and biotic features of the environment, along with tidal patterns, impacted risk‐related behaviors using humbug damselfish, Dascyllus aruanus, in coral reef habitats as a model system. We found that damselfish balance risk by utilizing cues from both the physical and the social environment, although the relative importance of these cues changes according to tide. At flowing tide, when food resources are typically more abundant, damselfish increased their foraging behavior, but only when their external social environment offered protection from predation. At slack tide, when food resources are typically less abundant, damselfish were not responsive to their external social environment. Regardless of tide, damselfish living in smaller corals showed more risk‐averse behavior, emphasizing the importance of local refuge availability on risk perception. Our results underscore the flexible use of social and physical information along temporal scales and how both biotic and abiotic features influence the trade‐off adopted between foraging and refuging behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.