This study synthesized collagen-chitosan/PVA nanofiber composites using the electrospinning method. Characterizations included Fourier transform infrared spectroscopy (FTIR) and surface morphology using scanning electron microscopy (SEM). Investigations were carried out on tensile strength, degradation rate, and antibacterial test. It was found that the functional groups C–H, –OH, C–O, C–N, and N–H were suitable for PVA, collagen, and chitosan materials. The SEM showed that increasing the PVA composition caused a change in fiber diameter ranging from 34.64 to 71.63 nm. The tensile strength results show that the smallest nanofiber diameter has the highest ultimate strength value of 5.6 ± 0.4 MPa. In addition, it was found that the rate of degradation was in the range of 44%–76%. The antibacterial activity test was carried out using two types of bacteria, i.e., a gram-positive bacteria, S. aureus, and a gram-negative bacteria, E. coli. The test results showed that the collagen-chitosan/PVA nanofiber composite had a diameter of antibacterial inhibition for E. coli and S. aureus bacteria, respectively.
Nanofiber scaffold has been widely developed as a tissue engineering material because it can imitate the ECM of bones. In this study, nanofiber scaffold is composed of polyvinyl alcohol (PVA), chitosan, polyethylene glycol (PEG), and hydroxyapatite (HAp) which have superior characteristics for tissue engineering applications. The nanofiber scaffold is synthesized using electrospinning. Experimental results show that dielectric barrier discharge (DBD) plasma treatment causes increased surface roughness, contributing to the improvement of surface wettability. This is indicated by a decrease in this contact angle from 9.92° to 1.74°. In addition, DBD plasma treatment also increased biodegradation as well as increased treatment time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.