Although the perirhinal cortex (PRC), parahippocampal cortex (PHC) and retrosplenial cortex (RSC) have an essential role in memory, the precise functions of these areas are poorly understood. Here, we review the anatomical and functional characteristics of these areas based on studies in humans, monkeys and rats. Our Review suggests that the PRC and PHC-RSC are core components of two separate large-scale cortical networks that are dissociable by neuroanatomy, susceptibility to disease and function. These networks not only support different types of memory but also appear to support different aspects of cognition.
A fundamental principle in memory research is that memory is a function of the similarity between encoding and retrieval operations. Consistent with this principle, many neurobiological models of declarative memory assume that memory traces are stored in cortical regions, and the hippocampus facilitates the reactivation of these traces during retrieval. The present investigation tested the novel prediction that encoding-retrieval similarity can be observed and related to memory at the level of individual items. Multivariate representational similarity analysis was applied to functional magnetic resonance imaging data collected during encoding and retrieval of emotional and neutral scenes. Memory success tracked fluctuations in encoding-retrieval similarity across frontal and posterior cortices. Importantly, memory effects in posterior regions reflected increased similarity between item-specific representations during successful recognition. Mediation analyses revealed that the hippocampus mediated the link between cortical similarity and memory success, providing crucial evidence for hippocampal-cortical interactions during retrieval. Finally, because emotional arousal is known to modulate both perceptual and memory processes, similarity effects were compared for emotional and neutral scenes. Emotional arousal was associated with enhanced similarity between encoding and retrieval patterns. These findings speak to the promise of pattern similarity measures for evaluating memory representations and hippocampal-cortical interactions.
Emotional events are remembered better than neutral events, and this emotion advantage becomes particularly pronounced over time. The time dependent effects of emotion impact recollection rather than familiarity-based recognition, and they influence recollection of item-specific details rather than contextual details. Moreover, the amygdala, but not the hippocampus, is critical in producing these effects. Time-dependent effects of emotion have been attributed to an emotional consolidation process whereby the amygdala gradually facilitates the storage of emotional memories by other medial temporal lobe regions. However, here we propose that these effects can be better understood by an emotional binding account whereby the amygdala mediates the recollection of item-emotion bindings that are forgotten more slowly than item-context bindings supported by the hippocampus.
Reward motivation is known to modulate memory encoding, and this effect depends on interactions between the substantia nigra/ ventral tegmental area complex (SN/VTA) and the hippocampus. It is unknown, however, whether these interactions influence offline neural activity in the human brain that is thought to promote memory consolidation. Here, we used functional magnetic resonance imaging (fMRI) to test the effect of reward motivation on post-learning neural dynamics and subsequent memory for objects that were learned in high- or low-reward motivation contexts. We found that post-learning increases in resting-state functional connectivity between the SN/VTA and hippocampus predicted preferential retention of objects that were learned in high-reward contexts. In addition, multivariate pattern classification revealed that hippocampal representations of high-reward contexts were preferentially reactivated during post-learning rest, and the number of hippocampal reactivations was predictive of preferential retention of items learned in high-reward contexts. These findings indicate that reward motivation alters offline post-learning dynamics between the SN/VTA and hippocampus, providing novel evidence for a potential mechanism by which reward could influence memory consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.