Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (∼42 000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (∼5200 since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2019 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2017 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
Abstract:Three lines of evidence indicate that North Cascade (Washington, USA) glaciers are currently in a state of disequilibrium. First, annual balance measured on nine glaciers yields a mean cumulative balance for the 1984-2004 period of 8Ð58 m water equivalent (w.e.), a net loss of ice thickness exceeding 9Ð5 m. This is a significant loss for glaciers that average 30-50 m in thickness, representing 18-32% of their entire volume.Second, longitudinal profiles completed in 1984 and 2002 on 12 North Cascade glaciers confirm this volume change indicating a loss of 5Ð7 to 6Ð3 m in thickness (5Ð0-5Ð6 m w.e.) between 1984 and 2002, agreeing well with the measured cumulative balance of 5Ð52 m w.e. for the same period. The change in thickness on several glaciers has been equally substantial in the accumulation zone and the ablation zone, indicating that there is no point to which the glacier can retreat to achieve equilibrium. Substantial thinning along the entire length of a glacier is the key indicator that a glacier is in disequilibrium.Third, North Cascade glacier retreat is rapid and ubiquitous. All 47 glaciers monitored are currently undergoing significant retreat or, in the case of four, have disappeared. Two of the glaciers where mass balance observations were begun, Spider Glacier and Lewis Glacier, have disappeared. The retreat since 1984 of eight Mount Baker glaciers that were all advancing in 1975 has averaged 297 m. These observations indicate broad regional continuity in glacial response to climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.