Key Points
Question
Can Kawasaki disease be accurately diagnosed on the basis of the pattern of host gene expression in whole blood?
Findings
In this case-control study of 606 children (404 in the discovery cohort; 202 in the validation cohort), a 13-transcript signature was identified that accurately discriminated Kawasaki disease from comparator febrile diseases in discovery and validation cohorts.
Meaning
A diagnostic blood test based on measurement of small numbers of host gene transcripts might enable early discrimination of Kawasaki disease from other infectious and inflammatory conditions.
Children undergoing surgery for congenital heart disease are at increased risk of intestinal mucosal injury and endotoxemia. Endotoxin activity correlates with a number of outcome variables in this population, and may be used to guide the use of gut-protective strategies.
Mycobacterium tuberculosis (M. tuberculosis) survives and multiplies inside human macrophages by subversion of immune mechanisms. Although these immune evasion strategies are well characterised functionally, the underlying molecular mechanisms are poorly understood. Here we show that during infection of human whole blood with M. tuberculosis, host gene transcriptional suppression, rather than activation, is the predominant response. Spatial, temporal and functional characterisation of repressed genes revealed their involvement in pathogen sensing and phagocytosis, degradation within the phagolysosome and antigen processing and presentation. To identify mechanisms underlying suppression of multiple immune genes we undertook epigenetic analyses. We identified significantly differentially expressed microRNAs with known targets in suppressed genes. In addition, after searching regions upstream of the start of transcription of suppressed genes for common sequence motifs, we discovered novel enriched composite sequence patterns, which corresponded to Alu repeat elements, transposable elements known to have wide ranging influences on gene expression. Our findings suggest that to survive within infected cells, mycobacteria exploit a complex immune “molecular off switch” controlled by both microRNAs and Alu regulatory elements.
Metabolomics is the study of the complement of small molecule metabolites in cells, biofluids and tissues. Many metabolomic experiments are designed to compare changes observed over time under two or more experimental conditions (e.g. a control and drug-treated group), thus producing time course data. Models from traditional time series analysis are often unsuitable because, by design, only very few time points are available and there are a high number of missing values. We propose a functional data analysis approach for modelling short time series arising in metabolomic studies which overcomes these obstacles. Our model assumes that each observed time series is a smooth random curve, and we propose a statistical approach for inferring this curve from repeated measurements taken on the experimental units. A test statistic for detecting differences between temporal profiles associated with two experimental conditions is then presented. The methodology has been applied to NMR spectroscopy data collected in a pre-clinical toxicology study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.