Marfan syndrome (MFS), one of the most common genetic disorders of connective tissue, is characterized by skeletal, cardiovascular and ocular abnormalities. The incidence of the disease is about 1 in 20,000, with life expectancy severely reduced because of cardiovascular complications. As the underlying defect is unknown, MFS diagnosis is based solely on clinical criteria. Certain phenotypic features of MFS are also shared by other conditions, which may be genetically distinct entities although part of a clinical continuum. Immunohistochemical studies have implicated fibrillin, a major component of elastin-associated microfibrils, in MFS aetiology. Genetic linkage analysis with random probes has independently localized the MFS locus to chromosome 15. Here we report that these two experimental approaches converge with the cloning and mapping of the fibrillin gene to chromosome 15q15-21, and with the establishment of linkage to MFS. We also isolated a second fibrillin gene and mapped it to chromosome 5q23-31. We linked this novel gene to a condition, congenital contractural arachnodactyly, that shares some of the features of MFS. Thus, the cosegregation of two related genes with two related syndromes implies that fibrillin mutations are likely to be responsible for different MFS phenotypes.
Marfan syndrome (MFS), a relatively common autosomal dominant hereditary disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular systems, is caused by mutations in the gene for fibrillin-1 (FBN1). The leading cause of premature death in untreated individuals with MFS is acute aortic dissection, which often follows a period of progressive dilatation of the ascending aorta. Recent research on the molecular physiology of fibrillin and the pathophysiology of MFS and related disorders has changed our understanding of this disorder by demonstrating changes in growth factor signalling and in matrix-cell interactions. The purpose of this review is to provide a comprehensive overview of recent advances in the molecular biology of fibrillin and fibrillin-rich microfibrils. Mutations in FBN1 and other genes found in MFS and related disorders will be discussed, and novel concepts concerning the complex and multiple mechanisms of the pathogenesis of MFS will be explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.