After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.
We have recently reported about a Saccharomyces cerevisiae strain that, in addition to the Piromyces XylA xylose isomerase gene, overexpresses the native genes for the conversion of xylulose to glycolytic intermediates. This engineered strain (RWB 217) exhibited unprecedentedly high specific growth rates and ethanol production rates under anaerobic conditions with xylose as the sole carbon source. However, when RWB 217 was grown on glucose-xylose mixtures, a diauxic growth pattern was observed with a relatively slow consumption of xylose in the second growth phase. After prolonged cultivation in an anaerobic, xylose-limited chemostat, a culture with improved xylose uptake kinetics was obtained. This culture also exhibited improved xylose consumption in glucose-xylose mixtures. A further improvement in mixed-sugar utilization was obtained by prolonged anaerobic cultivation in automated sequencing-batch reactors on glucose-xylose mixtures. A final single-strain isolate (RWB 218) rapidly consumed glucose-xylose mixtures anaerobically, in synthetic medium, with a specific rate of xylose consumption exceeding 0.9 gg(-1)h(-1). When the kinetics of zero trans-influx of glucose and xylose of RWB 218 were compared to that of the initial strain, a twofold higher capacity (V(max)) as well as an improved K(m) for xylose was apparent in the selected strain. It is concluded that the kinetics of xylose fermentation are no longer a bottleneck in the industrial production of bioethanol with yeast.
Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars would greatly contribute to the efficiency of production processes. One of the main challenges emerging from the use of lignocellulosics for the production of ethanol by the yeast Saccharomyces cerevisiae is efficient fermentation of D-xylose and L-arabinose, as these sugars cannot be used by natural S. cerevisiae strains. In this study, we describe the first engineered S. cerevisiae strain (strain IMS0003) capable of fermenting mixtures of glucose, xylose, and arabinose with a high ethanol yield (0.43 g g ؊1 of total sugar) without formation of the side products xylitol and arabinitol. The kinetics of anaerobic fermentation of glucose-xylose-arabinose mixtures were greatly improved by using a novel evolutionary engineering strategy. This strategy included a regimen consisting of repeated batch cultivation with repeated cycles of consecutive growth in three media with different compositions (glucose, xylose, and arabinose; xylose and arabinose; and only arabinose) and allowed rapid selection of an evolved strain (IMS0010) exhibiting improved specific rates of consumption of xylose and arabinose. This evolution strategy resulted in a 40% reduction in the time required to completely ferment a mixture containing 30 g liter ؊1 glucose, 15 g liter ؊1 xylose, and 15 g liter ؊1arabinose.In recent years, the need for biotechnological manufacturing based on lignocellulosic feedstocks has become evident (6, 10). In contrast to the readily fermentable, mainly starch-or sucrose-containing feedstocks used in current biotechnological production processes, lignocellulosic biomass requires intensive pretreatment and hydrolysis, which yield complex mixtures of sugars (3,7,14,27). For cost-effective and efficient industrial processes, complete and fast conversion of all sugars present in lignocellulosic hydrolysates is a prerequisite. The major hurdles encountered in implementing these production processes are the conversion of substrates that cannot be utilized by the organism of choice and, even more importantly, the subsequent improvement of sugar conversion rates and product yields.The use of evolutionary engineering has proven to be very valuable for obtaining phenotypes of (industrial) microorganisms with improved properties, such as an expanded substrate range, increased stress tolerance, and efficient substrate utilization (16,17). Also, for the yeast Saccharomyces cerevisiae, the preferred organism for large-scale ethanol production for the past few decades, evolutionary engineering has been extensively used to select for industrially relevant phenotypes. For ethanol production from lignocellulose by S. cerevisiae, one of the main challenges is efficient conversion of the pentoses ...
For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production, cannot ferment xylose and arabinose. Although metabolic and evolutionary engineering has enabled the efficient alcoholic fermentation of xylose under anaerobic conditions, the conversion of L-arabinose into ethanol by engineered S. cerevisiae strains has previously been demonstrated only under oxygen-limited conditions. This study reports the first case of fast and efficient anaerobic alcoholic fermentation of L-arabinose by an engineered S. cerevisiae strain. This fermentation was achieved by combining the expression of the structural genes for the L-arabinose utilization pathway of Lactobacillus plantarum, the overexpression of the S. cerevisiae genes encoding the enzymes of the nonoxidative pentose phosphate pathway, and extensive evolutionary engineering. The resulting S. cerevisiae strain exhibited high rates of arabinose consumption (0.70 g h ؊1 g [dry weight] ؊1 ) and ethanol production (0.29 g h ؊1 g [dry weight] ؊1 ) and a high ethanol yield (0.43 g g ؊1 ) during anaerobic growth on L-arabinose as the sole carbon source. In addition, efficient ethanol production from sugar mixtures containing glucose and arabinose, which is crucial for application in industrial ethanol production, was achieved.In the past decades, it has become clear that for future sustainable and cost-effective production of fuel ethanol from plant biomass, not only the readily degradable starch and sucrose fractions but also the much more resistant lignocellulosic fractions of plant biomass should be used. Although glucose and xylose are often the predominant sugars in these feedstocks, the economically efficient production of ethanol also requires the conversion of smaller carbohydrate fractions, such as L-arabinose, at high rates and yields (9, 23).Saccharomyces cerevisiae is presently the organism of choice for industrial ethanol production. Although wild-type S. cerevisiae strains rapidly ferment hexoses with high efficiency, they cannot grow on or use pentoses, such as D-xylose and L-arabinose (3). In addition to the development of pentose-consuming bacteria such as Zymomonas mobilis, Escherichia coli, and Klebsiella oxytoca as alternative biocatalysts for ethanol production (5), this situation has inspired various studies to expand the substrate range of S. cerevisiae. The combination of metabolic and evolutionary engineering with the heterologous expression of either yeast xylose reductase and xylitol dehydrogenase (14,32,34,35,41) or a fungal xylose isomerase (19)(20)(21)(22) has already enabled the anaerobic fermentation of D-xylose by S. cerevisiae. The next challenge is the fermentation of other pentoses, such as L-arabinose. Although several yeasts and fungi can utilize L-arabinose as ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.