Abstract. The aerodynamic roughness of heat, moisture, and momentum of a natural surface are important parameters in atmospheric models, as they co-determine the intensity of turbulent transfer between the atmosphere and the surface. Unfortunately this parameter is often poorly known, especially in remote areas where neither high-resolution elevation models nor eddy-covariance measurements are available. In this study we adapt a bulk drag partitioning model to estimate the aerodynamic roughness length (z0m) such that it can be applied to 1D (i.e. unidirectional) elevation profiles, typically measured by laser altimeters. We apply the model to a rough ice surface on the K-transect (west Greenland Ice Sheet) using UAV photogrammetry, and we evaluate the modelled roughness against in situ eddy-covariance observations. We then present a method to estimate the topography at 1 m horizontal resolution using the ICESat-2 satellite laser altimeter, and we demonstrate the high precision of the satellite elevation profiles against UAV photogrammetry. The currently available satellite profiles are used to map the aerodynamic roughness during different time periods along the K-transect, that is compared to an extensive dataset of in situ observations. We find a considerable spatio-temporal variability in z0m, ranging between 10−4 m for a smooth snow surface and 10−1 m for rough crevassed areas, which confirms the need to incorporate a variable aerodynamic roughness in atmospheric models over ice sheets.
On the Greenland ice sheet, the sensible heat flux is the second largest source of energy for surface melt. Yet in atmospheric models, the surface turbulent heat fluxes are always indirectly estimated using a bulk turbulence parametrization, which needs to be constrained by long-term and continuous observations. Unfortunately, such observations are challenging to obtain in remote polar environments, especially over ablating ice surfaces. We therefore test a classical eddy-covariance method, based on propeller anemometers and thermocouple measurements, to estimate the momentum and sensible heat fluxes on the Greenland ice sheet. To correct for the high-frequency attenuation, we experimentally derive the sensor frequency-response characteristics and evaluate the universal turbulence spectra on the ice sheet. We show that the corrected fluxes are accurate and that the sampling interval can be reduced to 4 s to increase the system’s autonomy. To illustrate its potential, we apply the correction to one year of vertical propeller eddy-covariance measurements in the western ablation area of the ice sheet, and quantify the seasonal variability of the sensible heat flux and of the aerodynamic roughness length.
Abstract. The aerodynamic roughness of heat, moisture and momentum of a natural surface is an important parameter in atmospheric models, as it co-determines the intensity of turbulent transfer between the atmosphere and the surface. Unfortunately this parameter is often poorly known, especially in remote areas where neither high-resolution elevation models nor eddy-covariance measurements are available. In this study we adapt a bulk drag partitioning model to estimate the aerodynamic roughness length (z0m) such that it can be applied to 1D (i.e. unidirectional) elevation profiles, typically measured by laser altimeters. We apply the model to a rough ice surface on the K-transect (western Greenland ice sheet) using UAV photogrammetry, and evaluate the modelled roughness against in situ eddy-covariance observations. We then present a method to estimate the topography at 1 m horizontal resolution using the ICESat-2 satellite laser altimeter, and demonstrate the high precision of the satellite elevation profiles against UAV photogrammetry. The currently available satellite profiles are used to map the aerodynamic roughness during different time periods along the K-transect, that is compared to an extensive dataset of in situ observations. We find a considerable spatiotemporal variability in z0m, ranging between 10−4 m for a smooth snow surface over 10−1 m for rough crevassed areas, which confirms the need to incorporate a variable aerodynamic roughness in atmospheric models over ice sheets.
We present a conceptual model for the diurnal cycle of the dry atmospheric boundary layer (ABL). It may serve as a framework for future numerical studies on the transitional dynamics that characterize the ABL over land. The conceptual model enables us to define expressions for relevant physical scales as a function of the most prominent forcing parameters and the low degree of complexity facilitates a dimensionless description. This is useful to help generalize boundary layer dynamics that occur on a diurnal time scale. Further, the model’s application for numerical studies is illustrated herein with two examples: a single-column-model study that assesses the effect of wind forcing on the main characteristics of the diurnal cycle, and a large-eddy-simulation study on the daily evolution of turbulence under weak-wind-forcing conditions. The results from these studies sketch the general evolution of the present set of diurnal-cycle systems in more detail. We discuss how the setups are able to reproduce well-known dynamical features of the ABL and also highlight limitations, where the simple conceptual system is unable to describe realistic ABL behavior. We conclude that the present conceptual model has an interesting balance between model-system complexity and physical realism, such that it is useful for future idealized studies on the diurnal cycle of the ABL.
<p>The turbulent exchange of heat at the surface, including the sensible heat flux (SHF), is an important component of the surface energy balance (SEB) over glaciers and ice sheets. Yet, the turbulent heat fluxes are parameterized in all SEB models, which makes their contribution to the modelled ice ablation uncertain.</p><p>In this study, we present several years of continuous, daily, in situ observations of SHF (eddy-covariance) and ice ablation, taken at multiple contrasting sites across the ablation area of the Greenland ice sheet. We then compare these measurements to several SEB models with different settings for the surface roughness lengths.</p><p>We show that it is possible to accurately model the SHF and the daily ice ablation, provided that the prescribed surface roughness lengths, for both heat and momentum, are accurate. We propose a simple parameterization of these roughness lengths, based on both in-situ measurements and remotely sensed data (UAV, ICESat-2).&#160; This updated parameterization can be implemented in SEB- and climate- models for improved simulations of ice sheet ablation and surface mass balance.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.