Cryopreservation of stallion semen has not reached the level of efficiency and positive results described in other species. This is mainly due to the greater sensitivity of stallion sperm to the freezing process, showing higher rates of oxidative stress and plasma membrane damage, which trigger the activation of several cell damage pathways that ultimately culminate in DNA fragmentation and cell death. Therefore, finding molecules that improve the efficiency of this technique in stallion by preventing oxidative stress and cell damage is required. Thus, the aim of the present study was to evaluate the effect of adding three antioxidants (MnTBAP, NAC and FeTPPS) to the freezing medium on the quality and functional parameters of stallion sperm. Semen samples from three stallions frozen with the antioxidants were evaluated in two conditions: (a) adding the antioxidants before freezing, and (b) before and after freezing. Plasma membrane integrity, mitochondrial membrane potential, lipid peroxidation, intracellular ROS levels, membrane lipid disorder, DNA damage, sperm motility and binding to the zona pellucida were assessed. The results showed that MnTBAP was the antioxidant treatment that best controlled the oxidative stress process and post‐thaw cell damage, showing higher plasma membrane integrity, mitochondrial membrane potential, sperm motility, number of spermatozoa bound to the zona pellucida of bovine oocytes and lower lipid disorder. Additionally, it was determined that a second post‐thaw application of antioxidants is detrimental since induced higher cell damage and lower sperm motility, without showing any beneficial effect on the spermatozoa.
This study was designed to determine the effect of location of the preovulatory dominant follicle and stage of ovarian follicle development on ovulation rate and embryo survival in alpacas. In Experiment 1, mature lactating alpacas were randomly assigned to one of two groups according to the location of the dominant follicle detected by ultrasonography: (a) Right ovary (RO, n=96) or (b) Left ovary (LO, n=108). All females were mated once by an intact adult male. Ovulation rate, CL diameter and embryo survival rate (heartbeat) were assessed by ultrasonography on Days 2 (Day 0=mating), 8 and 30, respectively. Ovulation rate (96.5 and 96.3% for RO and LO group, respectively), corpus luteum (CL) diameter (10.2 and 10.6 mm for RO and LO group, respectively) and pregnancy rate (60.2 and 56.7% for RO and LO group, respectively) did not differ among groups. In Experiment 2, lactating alpacas (n=116) were submitted to ultrasonic-guided follicle ablation to synchronize follicular wave emergence. Afterwards, daily ultrasonography examinations were performed and females were randomly assigned to the following groups according to the growth phase and diameter of the dominant follicle: (a) early growing (5-6 mm, n=27), (b) growing (7-12 mm, n=30); (c) static (7-12 mm, n=30), or (d) regressing phase (12-7 mm, n=29). All alpacas were mated with a proven intact male, except five alpacas from early growing group that rejected the male. Females were examined by ultrasonography on Day 2 (ovulation rate), Day 8 (CL diameter), and Days 15, 20, 25, 30 and 35 (embryo survival by the presence of embryo proper and heartbeat). No differences were detected in ovulation rate among groups (96%, 97%, 100%, and 97%) or in CL size (10.3, 11.7, 11.1, and 11.1 mm, for early growing, growing, early static and regressing, respectively). Although, embryo survival rate at Day 35 after mating was numerically greatest in growing (65.5%), intermediate in early growing (52.4%) and static (53.3%), and least in regressing phase (42.9%), there were no differences among groups. Results suggest that neither location nor stage of development of the dominant follicle has an influence on ovulation and embryo survival rate in alpacas.
Conventional in vitro fertilization has not yet been implemented in the equine species. One of the main reasons has been the inability to develop a culture medium and incubation conditions supporting high levels of stallion sperm capacitation and hyperactivation in vitro. Although different culture media have been used for this purpose, human tubal fluid (HTF) medium, widely used in the manipulation of human and mice gametes, has not been reported so far in stallion sperm culture. The first part of this study aimed to compare HTF and Whitten's media on different stallion sperm quality and capacitation variables. Additionally, the effect of procaine, aminopyridine and caffeine in both media was evaluated on sperm motility parameters at different incubation times. Integrity and destabilization of the plasma membrane were evaluated by merocyanine 540/SYTOX Green (MC540), mitochondrial membrane potential (∆Ψm) using tetramethylrhodamine methyl ester perchlorate (TMRM), acrosome membrane integrity by PNA/FITC and tyrosine phosphorylation by P-tyrosine mouse mAb conjugated to Alexa Fluor® by flow cytometry. Motility parameters were evaluated using the integrated semen analysis system (ISAS®). We found no differences between Whitten's and HTF media and incubation time in terms of sperm viability, uninduced acrosome membrane damage or mitochondrial membrane potential at 30- and 120-min incubation. Membrane fluidity (MC540) increased in both media at 30- and 120-min incubation compared to noncapacitating conditions. Similarly, tyrosine phosphorylation increased in both media in capacitating conditions at 2- and 4-hr incubation compared to noncapacitating conditions. Although procaine showed the best result in terms of sperm hyperactivated motility in both media, aminopyridine also showed parameters consistent with the hyperactivation including an increase in curvilinear velocity and decrease in straightness. In conclusion, HTF medium and aminopyridine equally support capacitation-related parameters in stallion sperm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.