The use of surface-enhanced Raman spectroscopy (SERS) to delineate between the breast epithelial cell lines MCF10A, SK-BR-3, and MDA-MB-231 is explored utilizing varied morphologies of gold nanoparticles. The nanoparticles studied had spherical, star-like, and quasi-fractal (nanocaltrop) morphologies and possessed varying degrees of surface inhomogeneity and complexity. The efficacy of Raman enhancement of these nanoparticles was a function of their size, their surface morphology, and the associated density of "hot spots," as well as their cellular uptake. The spherical and star-like nanoparticles provided strong signal enhancement that allowed for the discernment among the three cell phenotypes based solely on the acquired Raman spectra. The presence of overlapping Raman band spectral regions, as well as unique spectral bands, suggests that the underlying biological differences between these cells can be accessed without the need for tagging the nanoparticles or for specific cell targeting, demonstrating the potential ubiquity of this technique in imaging any cancer. This work provides clear evidence for the potential application of SERS as a tool for mapping cancerous lesions, possibly during surgery and under histopathological analysis.
<p>Quasi-fractal gold nanoparticles can be synthesized via a modified and temperature controlled procedure initially used for the synthesis of star-like gold nanoparticles. The surface features of nanoparticles leads to improved enhancement of Raman scattering intensity of analyte molecules due to the increased number of sharp surface features possessing numerous localized surface plasmon resonances (LSPR). The LSPR is affected by the size and shape of surface features as well as inter-nanoparticle interactions, as these affect the oscillation modes of electrons on the nanoparticle surfaces. The effect of the particle morphologies on the LSPR and further on the surface-enhancing capabilities of these nanoparticles is explored by comparing different nanoparticle morphologies and concentrations. We show that in a fixed nanoparticle concentration regime, Quasi-fractal gold nanoparticles provide the highest level of surface enhancement, whereas spherical nanoparticles provide the largest enhancement in a fixed gold concentration regime. The presence of highly branched features enables these nanoparticles to couple with a laser wavelength despite having no strong absorption band and hence no single surface plasmon resonance. This cumulative LSPR may allow these nanoparticle to be used in a variety of applications where laser wavelength flexibility is beneficial, such as in medical imaging applications where fluorescence at short laser wavelengths may be coupled with non-fluorescing long laser wavelengths for molecular sensing. </p>
<p>Quasi-fractal gold nanoparticles can be synthesized via a modified and temperature controlled procedure initially used for the synthesis of star-like gold nanoparticles. The surface features of nanoparticles leads to improved enhancement of Raman scattering intensity of analyte molecules due to the increased number of sharp surface features possessing numerous localized surface plasmon resonances (LSPR). The LSPR is affected by the size and shape of surface features as well as inter-nanoparticle interactions, as these affect the oscillation modes of electrons on the nanoparticle surfaces. The effect of the particle morphologies on the LSPR and further on the surface-enhancing capabilities of these nanoparticles is explored by comparing different nanoparticle morphologies and concentrations. We show that in a fixed nanoparticle concentration regime, Quasi-fractal gold nanoparticles provide the highest level of surface enhancement, whereas spherical nanoparticles provide the largest enhancement in a fixed gold concentration regime. The presence of highly branched features enables these nanoparticles to couple with a laser wavelength despite having no strong absorption band and hence no single surface plasmon resonance. This cumulative LSPR may allow these nanoparticle to be used in a variety of applications where laser wavelength flexibility is beneficial, such as in medical imaging applications where fluorescence at short laser wavelengths may be coupled with non-fluorescing long laser wavelengths for molecular sensing. </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.