Many coral reef fish larvae spend days to months in the open ocean before settlement on coral reefs [1]. Early in development, larvae have limited swimming capabilities and will therefore be greatly affected by currents. This can potentially result in dispersal distances of tens of kilometers [2]. Nevertheless, up to 60 % of surviving larvae have been shown to return to their natal reefs [2]. To home, the larvae must develop strong swimming capabilities and appropriate orientation mechanisms. Most late-stage larval reef fish can, after being passively drifted for days to weeks, swim strongly [3], and Ostorhinchus doederleini larvae have been shown to use chemotaxis to identify their natal reef once in its vicinity [2] and a sun compass for longer distance orientation [4] during the day. But how do they orient at night? Here, we show that newly settled fish caught at One Tree Island (OTI) at the Capricorn Bunker Reef Group (Great Barrier Reef) can use geomagnetic compass information to keep a south-east heading. This behavior might help them return to their natal reef in the absence of any celestial cues at night.
Coastal seas and oceans receive engineered nanoparticles that are released from nanoenabled consumer and industrial products and incidental nanoparticles that are formed as byproducts of combustion and friction. The marine environment is often perceived as a rapid sink for particles, because of the high salinity promoting the attachment between particles producing heavy agglomerates that sediment on the seafloor. In this work the effect of seasonal production of extracellular polymeric substances (EPS) on particle stability is tested using seawater collected from the Gullmarn fjord in the winter, spring, and summer. A novel approach is used that is based on light scattering of the bulk particle population for tracking agglomerates and of single particles for tracking particles smaller than approximately 300 nm. Results show that organic particles formed from EPS during algal blooms are capable of stabilizing nanoparticles in marine waters for at least 48 h. In contrast, particles agglomerate rapidly in the same seawater that has previously been filtered through 0.02 µm pore size membranes. Furthermore, particles with fibrillar shape have been detected using atomic force microscopy, supporting the argument that organic particles from EPS are responsible for the stabilization effect. These results suggest that seasonal biological activity can act as an intermittent stabilization factor for nanoparticles in marine waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.