A wide range of plant RNA extraction methods are available; however, many of these are limited in their application for a diverse range of plant species. With special emphasis on robustness and versatility, we have improved the cetyltrimethylammonium bromide (CTAB) method and isolated high-quality RNA from 16 different plant species. The major modifications made to the protocol described here were a reduction of sample treatment steps and an increase in beta-mercaptoethanol concentration (to 3%) resulting in a robust, rapid and reproducible plant RNA extraction protocol that can be used for a broad range of plant species and tissue types.
Our data demonstrate that both the Xhosa and CMA populations exhibit unique genetic profiles that could influence the outcome of drug therapy in these populations.
South Africa, like many other Southern African countries, has one of the highest HIV infection rates in the world and many individuals consequently receive antiretroviral therapy (ART). However, knowledge regarding (i) the prevalence of functional single nucleotide polymorphisms (SNPs) in pharmacologically relevant genes, and (ii) variance in pharmacotherapy both within and between different populations and ethnic groups is limited. The aim of this study was to determine whether selected polymorphisms in cytochrome P450 (CYP) genes (CYP2B6 and CYP3A4) and the multidrug-resistance 1 (ABCB1) gene underlie altered antiretroviral (ARV) drug response in two South African populations. DNA samples from 182 HIV-positive individuals of Mixed-Ancestry and Xhosa ethnicity on ART were genotyped for the A-392G SNP in CYP3A4, the G516T and A785G SNPs in CYP2B6, and the T-129C, C1236T, G2677T/A and C3435T SNPs in ABCB1. Univariate two-way analysis of variance (ANOVA) testing revealed no apparent effect of ethnicity on immune recovery (in terms of CD4-cell count) in response to ART. Univariate one-way ANOVA testing revealed a discernible effect of genotype on immune recovery in the cases of the T-129C (P¼0.03) and G2677A (Po0.01) polymorphisms in the ABCB1 gene. This study serves as a basis for better understanding and possible prediction of pharmacogenetic risk profiles and drug response in individuals and ethnic groups in South Africa.
Gene expression of grapevine vacuolar H(+)-pyrophosphatase (V-PPase EC 3.6.1.1.) during fruit ripening has previously been reported. Here we report on putative multiple V-PPase isoforms in grapevine. In this study a full-length cDNA sequence with an open reading frame of 2,295 nucleotides encoding a V-PPase gene (vpp2: acc. nr. AJ557256) was cloned. Sequence analyses of the deduced amino acid residues and RT-PCR experiments indicated that Vitis vinifera L. has at least two distinct isoforms of the V-PPase gene. Bioinformatic analyses of 13 V-PPase protein sequences revealed two highly conserved motifs associated with pyrophosphate (PPi) binding and response to stress, respectively. Both V-PPase isoforms were expressed at higher levels in the late post-véraison stage of grape berry ripening. Results also showed that the expression of grapevine V-PPase was induced by cold stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.