We model the location, geometry and density of the source of the recent geological unrest at Campi Flegrei caldera (Italy) by inverting levelling, trilateration and gravity measurements collected between 1980 and 1995. The best fitting source for the 1980–84 inflation is a horizontal penny‐shaped crack with a density 142 to 1115 kg/m3. The source best fitting the deflation period (1990–95) is a vertical spheroid with density between 902 and 1015 kg/m3. These results exclude the intrusion of magma, and indicate the migration of fluid to and from the caldera hydrothermal system as the cause of ground deformation and consequent unrest.
We use GPS measurements and block modeling to investigate the present‐day deformation of the Adriatic region, whose kinematics within the Nubia‐Eurasia plate boundary zone is not well constrained and remains controversial. Block modeling allows us to compute rigid‐plate angular velocities while accounting for elastic strain accumulation along block‐bounding faults. Results suggest that the Adriatic is a microplate (Adria) and that the southern boundary with the Nubia plate and the Aegean domain may be located along the Apulia Escarpment and the Kefallinia fault. Geodetic data alone cannot discriminate between a single block (AP) or a two blocks (GDAP) description of Adria, but the GDAP model predicts boundary slip rates that are in better agreement with observations from previous studies.
Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.
Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast ͑hours to weeks͒, as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera ͑California, U.S.A.͒ and Campi Flegrei ͑Italy͒, careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological interpretations, particularly when the real crust surrounding the source is far from the homogeneous/isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located ͑e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography͒. Applications at Teide volcano ͑Tenerife͒ and Campi Flegrei demonstrate the importance of this more realistic description in gravity calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.