International audienceWe study the possibility of muon radiography as a tool to investigate space and time changes in the internal density distribution inside geological structures. Previous work has shown the practical applicability of this method. Nevertheless, quantitative information on factors which impose limitations on it are still sorely lacking in the literature. We discuss the main issues that can influence the final result of a geophysical imaging experiment. In particular, with the view of optimizing the signal-to-noise ratio, we address issues concerning (i) the energy spectrum for muons arriving at different zenith angles, (ii) the muon propagation model through matter and (iii) the characteristics of the muon detector (telescope) that we have designed to perform experiments of muon radiography against the harsh environment usually encountered in the active zone of a volcano. We thus identify factors that can induce either static or dynamic effects and that should be taken into account. We also define a feasibility eq. (32) relating the geometrical characteristics of the telescope and the duration of the experiment to the expected density resolution, in turn a function of the geometrical characteristics of the target structure. This relation is especially important to define the applicability domain of muon radiography and it is utilized to test the suitability of the method to investigate the density distribution inside some candidate target structures
Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast ͑hours to weeks͒, as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera ͑California, U.S.A.͒ and Campi Flegrei ͑Italy͒, careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological interpretations, particularly when the real crust surrounding the source is far from the homogeneous/isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located ͑e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography͒. Applications at Teide volcano ͑Tenerife͒ and Campi Flegrei demonstrate the importance of this more realistic description in gravity calculations.
Gravity changes are presented from a series of field microgravity surveys conducted at Mt Etna between August 1994 and November 1996, a period including the 1995–1996 explosive summit activity. Data were collected along a microgravity network of 69 stations at a monthly to annual sampling rate, depending on each subarray of the network. Results show that seasonal changes in water level within the volcano may induce gravity changes of up to 20 μgal on Etna’s southern slope, and indicate that significant magma movement occurred within and below Etna’s edifice between 1994 and 1996. In particular, between September 1994 and October 1995, a mass increase of 2 × 1010 kg occurred 2000 m beneath the summit craters. Between October 1995 and July 1996 this mass was lost, while another 2 × 1010 kg was injected at about 1000 m a.s.l. into the 1989 fracture system. From the gravity data alone, it is not possible to distinguish whether the first shallow intrusion (1994–1995) was then injected laterally into the 1989 fracture, or summit activity was fed by the first shallow intrusion, while new magma entered the 1989 fracture system. While magma was being redistributed within the volcanic edifice, measurements along an E–W‐trending profile on the southern slope of the volcano detected some 1.5 × 1011 kg of magma accumulating 2–3 km below sea level between October 1995 and November 1996.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.