The quantification of the maximum runout, invaded area, volume and total grain-size distribution (TGSD) of pyroclastic density currents (PDC) is a critically important task because such parameters represent the needed input quantities for physical modeling and for hazard assessment of PDCs. In this work, new and well-established methods for the quantification of these parameters are applied to a large stratigraphic dataset of three PDC units from two eruptions of Somma-Vesuvius (the AD 79 Pompeii and the AD 472 Pollena eruptions), representative of a large spectrum of transport and depositional processes. Maximum runout and invaded area are defined on the basis of the available volcanological and topographical constraints. The related uncertainties are evaluated with an expert judgement procedure, which considered the different sectors of the volcano separately. Quite large uncertainty estimates of dispersal area (20-40%) may have important implications in terms of hazard assessment. The testing of different methods for estimating the volume (and mass) of a PDC deposit suggests that integration, over the invaded area, of thickness (and deposit density) data using the triangulated irregular network method can minimize and localize data extrapolation. Such calculations, however, bear an intrinsic additional uncertainty (at least 10% of the total PDC deposit) related to loss or new formation of fine material during transport (at least 10% of the total PDC deposit). Different interpolation methods for TGSD produce multimodal distributions, likely reflecting the different response of each grain size class to transport and deposition processes. These data, when integrated with information on the related co-ignimbrite deposits, can give a more accurate picture of the pyroclastic mixture feeding the current. Response to Reviewers: Dear Associate Editor, we have addressed all the requests for the revision, which are detailed in the following letter and in the manuscript with tracked changes. Furthermore, we have embedded figure captions in each figure's file, and we have checked the formatting of the references and the bibliography. Please let us know if you need also the figures withouth the captions.
Mt. Vesuvius is one of the most studied volcanoes in the world and its proximity to an extremely populated area makes it also one of the most threatening. Violent Strombolian (VS) events have occurred in the most recent history of the volcano, and they are the type most likely to occur in case of reactivation of the volcano in the near future. In order to investigate the dynamics and hazard of this type of eruption, we performed new field and laboratory work and numerical simulations of plume dynamics, fallout and tephra dispersal associated with such eruptions. Attention was specifically focused on the 1906 eruption, a recent and well-studied VS event. Based on new field analyses and historical observations, we reconstructed the temporal evolution of eruption source conditions during the event. The reconstructed explosive phase of the eruption is inferred to have been 8 days long and characterized by two distinct stages: a former short and intense period with sustained convective plume fed by powerful lava fountains (20 h) followed by a prolonged and less intense period of ash emission (172 h). The total grain-size distributions for both phases, used as inputs to the model, were obtained by field work and laboratory analyses. Based on these new volcanological data and reconstruction of wind field direction and intensity, partially derived from historical sources, the 1906 event was numerically simulated and results compared to deposit distributions. The modelling outcomes for the ash emission phase provide a better agreement with the measured tephra mass load for a simulation run in which ash aggregation (described by the models of Cornell et al. J Volcanol Geotherm Res 17:89-109, 1983, and Biass et al. Nat Hazard Earth Syst Sci 14:2265-2287, 2014) is specifically taken into account, confirming the importance of this process during tephra dispersal. The aggregation model that best fits the simulated results to the measured ground loadings has 80 % of particles Φ≥4 that aggregate uniformly in the range Φ=−1 to 3. Two additional simulations of a VS event were carried out by using meteorological data of two specific periods to exemplify weather's potential on impacts of such eruptions, particularly tephra loading, on the surrounding areas. The model outcomes clearly highlight the major effects of differences in local meteorology on plume dynamics and ash dispersal and the key role of wind shear in determining the cumulative thickness of ground deposits. Results also show that, due to the long duration of this kind of eruption and the large variability in zonal winds at this latitude, ash dispersal and fallout from VS events at Vesuvius represent a probable hazard for all of the territory near Vesuvius, including the city of Naples, where cumulative tephra loadings might reach critical thresholds for roof collapse and infrastructure damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.