Very little is known about the turnover of extracellular matrix in the human intervertebral disc. We measured concentrations of specific molecules reflecting matrix synthesis and degradation in predetermined regions of 121 human lumbar intervertebral discs and correlated them with ageing and Thompson grade of degeneration.Synthesis in intervertebral discs, measured by immunoassay of the content of a putative aggrecan biosynthesis marker (846) and the content of types I and II procollagen markers, is highest in the neonatal and 2-5-yr age groups. The contents of these epitopes/molecules progressively diminished with increasing age. However, in the oldest age group (60-80 yr) and in highly degenerated discs, the type I procollagen epitope level increased significantly.The percentage of denatured type II collagen, assessed by the presence of an epitope that is exposed with cleavage of type II collagen, increased twofold from the neonatal discs to the young 2-5-yr age group. Thereafter, the percentage progressively decreased with increasing age; however, it increased significantly in the oldest group and in highly degenerate discs.We identified three matrix turnover phases. Phase I (growth) is characterized by active synthesis of matrix molecules and active denaturation of type II collagen. Phase II (maturation and ageing) is distinguished by a progressive drop in synthetic activity and a progressive reduction in denaturation of type II collagen. Phase III (degeneration and fibrotic) is illustrated by evidence for a lack of increased synthesis of aggrecan and type II procollagen, but also by an increase in collagen type II denaturation and type I procollagen synthesis, both dependent on age and grade of tissue degeneration. ( J. Clin. Invest. 1996. 98:996-1003.)
Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material.Keywords Intervertebral disc degeneration Á Animal models Á In vivo Á In vitro All of the authors contributed equally to this publication and are listed simply in alphabetical order.
Despite the high prevalence of intervertebral disc disease, little is known about changes in intervertebral disc cells and their regenerative potential with ageing and intervertebral disc degeneration. Here we identify populations of progenitor cells that are Tie2 positive (Tie2+) and disialoganglioside 2 positive (GD2+), in the nucleus pulposus from mice and humans. These cells form spheroid colonies that express type II collagen and aggrecan. They are clonally multipotent and differentiated into mesenchymal lineages and induced reorganization of nucleus pulposus tissue when transplanted into non-obese diabetic/severe combined immunodeficient mice. The frequency of Tie2+ cells in tissues from patients decreases markedly with age and degeneration of the intervertebral disc, suggesting exhaustion of their capacity for regeneration. However, progenitor cells (Tie2+GD2+) can be induced from their precursor cells (Tie2+GD2−) under simple culture conditions. Moreover, angiopoietin-1, a ligand of Tie2, is crucial for the survival of nucleus pulposus cells. Our results offer insights for regenerative therapy and a new diagnostic standard.
Runt-related transcription factor 2 (RUNX2) is a transcription factor closely associated with the osteoblast phenotype. While frequently referred to, the complexity of its regulation and its interactions within the osteoblast differentiation pathway are often overlooked. This review aims to summarise the knowledge of its regulation at the transcriptional, translational and post-translational level. In addition, the regulation of RUNX2 by factors commonly used during osteogenic studies will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.