The industrial production of preforms for the manufacture of PET bottles, during the plastic injection process, is essential to regulate the drying temperature of the PET resin, to control the generation of Acetaldehyde (ACH), which alters the flavor of carbonated or non-carbonated drinks, giving the drink a citrus flavor and putting in doubt the quality of packaged products. In this work, an Artificial Neural Network (ANN) of the Backpropagation type (Cascadeforwardnet) is specified to support the decision-making process in controlling the ideal drying temperature of the PET resin, allowing specialists to make the necessary temperature regulation decisions for the best performance by decreasing ACH levels. The materials and methods were applied according to the manufacturer's characteristics on the moisture in the PET resin grain, which may contain between 50 ppm and 100 ppm of ACH. Data were collected for the method analysis, according to temperatures and residence times used in the blow injection process in the manufacture of the bottle preform, the generation of ACH from the PET bottle after solid post-condensation stage reached residual ACH levels below (3-4) ppm, according to the desired specification, reaching levels below 1 ppm. The results found through the Computational Intelligence (IC) techniques applied by the ANNs, where they allowed the prediction of the ACH levels generated in the plastic injection process of the bottle packaging preform, allowing an effective management of the parameters of production, assisting in strategic decision making regarding the use of temperature control during the drying process of PET resin.
Current market conditions require organizations to understand the business environment in order to achieve strategic planning and decision-making processes. An organization's competitive advantage is associated with an understanding of how to determine the potential of these companies when examining internal and external conditions (insertions) and the effort to meet customer needs. Among the many tools that contribute to this understanding, the SWOT analysis stands out, which can assist organizations to better understand the internal and external environment and formulate strategic plans in a collaborative way. This work aimed to implement an evaluation model for SWOT analysis using fuzzy inference methods. The adopted methodology started from a survey on the internal and external characteristics of the organization, definition of the linguistic criteria of the SWOT matrix, correlation between the variables found and elaboration of the fuzzy inference system for crossing the inputs. The approach proposed by the Fuzzy Inference model for the SWOT matrix proved to be simplified and efficient for a better collection of information that allows the prediction of the future environment, enabling reasoned strategies resulting from the model presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.