The surface of vulcanized ethylene propylene diene terpolymers (EPDM) was modified by Ar and N2, microwave generated plasma in order to improve adhesion properties. Surface modification was characterized by universal attenuated total reflectance Fourier Transform Infrared (UATR/FT-IR), because it presented lower interference of ingredients of EPDM formulation when compared with other techniques used for the attenuated total reflectance (ATR) to different crystals (ATR/KRS-5 and ATR/Ge). Oxygenated groups were introduced on the surface after treatments which were formed when the activated surface was exposed to the plasma gas. In treatments with nitrogen, oxygen groups and probable nitrogen groups were formed on the surface and could be identified by FT-IR. Reduction in the measurement of the contact angle and an increase in the work of adhesion and in the peel strength (EPDM X Polyurethane (PU)) were observed after the treatment resulted in the improvement of the adhesion properties of the modified surface.
Fourier transform infrared spectroscopy techniques, associated or not to others, are a well-studied subject used for characterizing polymers/energetic materials that have been employed mainly in aerospace industries. However, the infrared analyses are usually qualitative and performed using the mid-infrared. This paper discusses the Fourier transform infrared spectroscopy qualitative and quantitative methodologies, coupled or not with thin layer chromatography and thermogravimetric analysis, for characterization of aerospace polymer systems, in some cases, using mid-infrared, near-infrared and far-infrared regions, by traditional accessories and the latest generation spectra mode, universal attenuated total reflection. This short review was made based on methodologies developed during the last two decades and published by many scientific and industrial research groups, emphasizing studies usually carried out in the last five years. A critical assessment and future trends were included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.